[1] XU M, GIRISH Y R, RAKESH K P, et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533. [2] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [3] WANG X, GAO X, ZHANG Z, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688. [4] CHEN M, WANG M, YANG H, et al. Pre-oxidation of Ti and its diffusion bonding to K9 glass: Microstructure and mechanism properties[J]. Journal of Materials Science, 2022, 57(12): 6790-6802. [5] 刘伟, 商圆圆, 邓朝晖, 等. 砂轮表面形貌定量评价及修整效果研究[J]. 中国机械工程, 2018, 29(19): 2277-2283. LIU Wei, SHANG Yuanyuan, DENG Zhaohui, et al. Study on quantitative evaluations and dressing effectiveness for surface topography of grinding wheels[J]. China Mechanical Engineering, 2018, 29(19): 2277-2283. [6] MUKHOPADHYAY P, GHOSH A. Development and quality assessment of multi-point brazed diamond dressers produced by active brazing under high vacuum[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 647-662. [7] CHEN B, GUO B, ZHAO Q. On-machine precision form truing of arc-shaped diamond wheels[J]. Journal of Materials Processing Technology, 2015, 223: 65-74. [8] SU H, DAI J, DING W, et al. Experimental research on performance of monolayer brazed diamond wheel through a new precise dressing method—plate wheel dressing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 3249-3259. [9] 张丙鹏, 赵文祥, 杨洪建, 等. 碟型金刚石砂轮修整系统稳定性分析及修整装置的改进[J]. 工具技术, 2006, 40(5): 32-35. ZHANG Bingpeng, ZHAO Wenxiang, YANG Hongjian, et al. Analysis about stability of dressing system for dish diamond grinding wheel and improvement of dressing equipment[J]. Tool Engineering, 2006, 40(5): 32-35. [10] ALEKSANDROVA I S. Multi-objective optimization of the dressing parameters in fine cylindrical grinding[J]. Strojniski Vestnik, 2019, 65(2): 87-102. [11] 赵玲玲. 粗磨粒砂轮修整及光学玻璃平面磨削分析[J]. 中国设备工程, 2019, 21: 126-127. ZHAO Lingling. Analysis of coarse grain grinding wheel dressing and optical glass surface grinding[J]. China Plant Engineering, 2019, 21: 126-127. [12] 戴逢明, 苏宏华, 张昆, 等. 粗磨粒金刚石砂轮精密磨削工程陶瓷的试验研究[J]. 金刚石与磨料磨具工程, 2014, 34(1): 23-27. DAI Fengming, SU Honghua, ZHANG Kun, et al. Experimental research on the precision grinding of advanced ceramics using coarse diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2014, 34(1): 23-27. [13] LU Y J, X J, SI X H. Study on micro-topographical removals of diamond grain and metal bond in dry electro-contact discharge dressing of coarse diamond grinding wheel[J]. International Journal of Machine Tools and Manufacture, 2015, 88: 118-130. [14] 余剑武, 何利华, 尚振涛, 等. 小直径青铜结合剂微粉砂轮的电火花精密修整实验研究[J]. 机械工程学报, 2019, 55(3): 199-207. YU Jianwu, HE Lihua, SHANG Zhentao, et al. Experimental investigation on precision electrical discharge dressing of small-diameter bronze-bonded fine grain grinding wheel[J]. Journal of Mechanical Engineering, 2019, 55(3): 199-207. [15] DENG H, XU Z. Laser dressing of arc-shaped resin-bonded diamond grinding wheels[J]. Journal of Materials Processing Technology, 2021, 288: 116884. [16] AXINTE D A, STEPANIAN J P, KONG M C, et al. Abrasive waterjet turning-an efficient method to profile and dress grinding wheels[J]. International Journal of Machine Tools and Manufacture, 2009, 49(3-4): 351-356. [17] 杨志波, 杨瑞云, 李斌, 等. 金刚石砂轮激光-超声振动复合修整试验研究[J]. 河南科技学院学报, 2016, 44(1): 46-50. YANG Zhibo, YANG Ruiyun, LI Bin, et al. Experimental research on truing of diamond wheels with laser heating and ultrasonic vibration assistance[J]. Journal of Henan Institute of Science and Technology, 2016, 44(1): 46-50. [18] ZHAO B, JIA X F, CHEN F, et al. Control model and the experimental study on the ultrasonic vibration-assisted electrolytic in-process dressing internal grinding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92: 1277-1289. [19] OLIVEIRA L J, CABRAL S C, FILGUEIRA M. Study hot pressed Fe-diamond composites graphitization[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 228-234. [20] 郭晓光, 刘涛, 翟昌恒, 等. 过渡金属作用下的金刚石石墨化机理研究[J]. 机械工程学报, 2016, 52(20): 23-29. GUO Xiaoguang, LIU Tao, ZHAI Changheng, et al. Study on the mechanism of diamond graphite with the action of transition metals[J]. Journal of Mechanical Engineering, 2016, 52(20): 23-29. [21] LI C, ZHANG F, MENG B, et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J]. Ceramics International, 2017, 43(3): 2981-2993. [22] 吴重军, 李蓓智. 碳化硅磨削微观损伤机理及其高性能磨削技术研究[J]. 机械工程学报, 2019, 55(6): 232. WU Zhongjun, LI Beizhi. Research on micro-damage mechanism in grinding of silicon carbide and its high performance grinding technology[J]. Journal of Mechanical Engineering, 2019, 55(6): 232. [23] 高超, 吴国荣, 王生. 碳化硅陶瓷的磨削去除方式及质量控制[J]. 工具技术, 2016, 50(11): 51-54. GAO Chao, WU Guorong, WANG Sheng. Grinding removal methods and quality control of SiC ceramic[J]. Tool Engineering, 2016, 50(11): 51-54. [24] 王春辉, 安润莉, 史双佶, 等. W-Mo-Cr合金对金刚石砂轮磨块的摩擦化学修整[J]. 金刚石与磨料磨具工程, 2017, 37(1): 51-55. WANG Chunhui, AN Runli, SHI Shuangji, et al. Dynamic friction dressing of the diamond abrasive brick by W-Mo-Cr alloy[J]. Diamond & Abrasives Engineering, 2017, 37(1): 51-55. [25] 刘谦, 孟凡卓, 田欣利, 等. 碳化硅陶瓷高效端面磨削试验研究[J]. 工具技术, 2018, 52(8): 16-19. LIU Qian, MENG Fanzhuo, TIAN Xinli, et al. Experimental study on high efficiency face grinding of silicon carbide ceramics[J]. Tool Engineering, 2018, 52(8): 16-19. |