[1] ZHANG Weiting , YANG Dong , WANG Hongchao. Data-driven methods for predictive maintenance of industrial equipment: A Survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227. [2] 彭宇,刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495. PENG Yu, LIU Datong. Data-driven prognostics and health management : A review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495. [3] 王丹,康琦,杨居衡,等. 基于 UKF 的海上天然气井 数据驱动软测量方法[J]. 天然气工业, 2022, 42(9): 84-92. WANG Dan, KANG Qi, YANG Juheng, et al. UKF-based data-driven soft sensing for offshore gas wells[J]. Natural Gas Industry, 2022, 42(9): 84-92. [4] WANG Lei. BP network implementation based on computer Matlab neural network toolbox[J]. Journal of Physics: Conference Series, 2020, 1648(2): 022134. [5] HUANG Limin, JING Yu, CHEN Hangyu, et al. A regional wind wave prediction surrogate model based on CNN deep learning network[J]. Applied Ocean Research, 2022, 126: 103287. [6] AMALOU I, MOUHNI N, ABDALI A. Multivariate time series prediction by RNN architectures for energy consumption forecasting[J]. Energy Reports, 2022, 8(9): 1084-1091. [7] NGUYEN N D, NGUYEN V T. Development of ANN structural optimization framework for data-driven prediction of local two-phase flow parameters[J]. Progress in Nuclear Energy, 2022, 146: 104176. [8] YUAN Xiaofeng, LI Lin, SHARDT Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2020, 68(5): 4404-4414. [9] ZHANG Junhui, WANG Di, XU Bing, et al. Flow control of a proportional directional valve without the flow meter[J]. Flow Measurement and Instrumentation, 2019, 67: 131-141. [10] HUO Dongyang, CHEN Jinshi, ZHANG Han, et al. Intelligent prediction for digging load of hydraulic excavators based on RBF neural network[J]. Measurement, 2023, 206: 112210. [11] KILIC E, DOLEN M, CALISKAN H, et al. Pressure prediction on a variable-speed pump controlled hydraulic system using structured recurrent neural networks[J]. Control Engineering Practice, 2014, 26: 51-71. [12] WU Yuting, YUAN Mei, DONG Shaopeng, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing, 2018, 275: 167-179. [13] EISAID A, HIGGINS J, HIGGINS J, et al. Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration[J]. Applied Soft Computing Journal, 2018, 73: 969-991. [14] ZHANG Bin, ZHANG Shaohui, LI Weihua. Bearing performance degradation assessment using long short-term memory recurrent network[J]. Computers in Industry, 2019, 106: 14-29. [15] CABRERA D, GUAMÁN A, ZHANG Shaohui, et al. Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J]. Neurocomputing, 2019, 380: 51-66. [16] 崔佳旭,杨博. 贝叶斯优化方法和应用综述[J]. 软件学 报, 2018, 29(10): 3068-3090. CUI Jiaxu, YANG Bo. Survey on bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090. [17] GUO Xiaohui , WANG Yuanfeng , MEI Shengqi. Monitoring and modelling of PM2.5 concentration at subway station construction based on IoT and LSTM algorithm optimization[J]. Journal of Cleaner Production, 2022, 360: 132179. [18] 季天瑶,王挺韶. 基于词嵌入与卷积神经网络的建筑能 耗预测[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 40-48. JI Tianyao , WANG Tingshao. Building energy consumption prediction based on word embedding and convolutional neural network[J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(6): 40-48. [19] 石怀涛,尚亚俊,白晓天,等. 基于贝叶斯优化的 SWDAE-LSTM 滚动轴承早期故障预测方法研究[J]. 振 动与冲击, 2021, 40(18): 286-297. SHI Huaitao, SHANG Yajun, BAI Xiaotian, et al. Early fault prediction method combining SWDAE and LSTM for rolling bearings based on Bayesian optimization[J]. Journal of Vibration and Shock, 2021, 40(18): 286-297. [20] 曹东辉,师建鹏,石向星,等. 电液比例挖掘机闭环控 制技术思考[J]. 液压与气动, 2021, 45(6): 142-149. CAO Donghui, SHI Jianpeng, SHI Xiangxing, et al. Thinking of closed loop control technology of electrohydraulic proportional excavator[J]. Chinese Hydraulics & Pneumatics, 2021, 45(6): 142-149. [21] 刘鸿泉,陈少林,孙晓颖,等. 基于神经网络的核电厂 设备易损性分析[J]. 力学学报, 2022, 54(7): 2059-2070. LIU Hongquan, CHEN Shaolin, SUN Xiaoying, et al. Vulnerability analysis of NPP equipment based on neural network[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2059-2070. [22] 王岩,陈耀然,韩兆龙,等. 基于互信息理论与递归神 经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. WANG Yan, CHEN Yaoran, HAN Zhaolong, et al. Short-term wind speed forecasting model based on mutual information and recursive neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. [23] LI Daoqing, YU Xiaodong, LIU Shulin, et al. Wind power prediction based on PSO-Kalman[J]. Energy Reports, 2022, 4(8): 958-968. [24] LIMA F T , SOUZA V. A large comparison of normalization methods on time series[J]. Big Data Research, 2023, 34: 100407. [25] 李鹏,冯存前,许旭光,等. 一种利用贝叶斯优化的弹 道目标微动分类网络[J]. 西安电子科技大学学报, 2021, 48(5): 139-148. LI Peng, FENG Cunqian, XU Xuguang, et al. Ballistic target fretting classification network based on Bayesian optimization[J]. Journal of Xidian University, 2021, 48(5): 139-148. |