[1] 宋学官,张天赐,付涛,等. 智重装备的结构与控制多 学科一体化优化设计方法[J]. 机械工程学报, 2022, 58(17): 26-40. SONG Xueguan , ZHANG Tianci , FU Tao , et al. Multidisciplinary co-design optimization of structural and control parameters for intelligent large-scale equipments[J]. Journal of Mechanical Engineering, 2022, 58(17): 26-40. [2] 施国标,张洪泉,王帅,等. 电液耦合转向系统应急转 向控制方法研究[J]. 机械工程学报, 2023, 59(6): 149-158. SHI Guobiao, ZHANG Hongquan, WANG Shuai, et al. Research on emergency steering control method of integrated electric-hydraulic steering system for commercial vehicle[J]. Journal of Mechanical Engineering, 2023, 59(6): 149-158. [3] WANG Pei, YAO Jing, FENG Baidong, et al. Modelling and dynamic characteristics for a non-metal pressurized reservoir with variable volume[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1-15. [4] DONKOV V H, ANDERSEN T, LINJAMA M, et al. Digital hydraulic technology for linear actuation: A state of the art review[J]. International Journal of Fluid Power, 2020, 21(2): 263-304. [5] WARD S. Digital hydraulics in aircraft control surface actuation[D]. Linköping: Linköping University, 2017. [6] SHANG Yaoxing, LI Renjie, WU Shuai, et al. A research of high-precision pressure regulation algorithm based on on/off valves for aircraft braking system[J]. IEEE Transactions on Industrial Electronics, 2021, 69(8): 7797-7806. [7] 俞军涛,焦宗夏,吴帅. 大流量压电式高速开关阀设计 与仿真测试[J]. 机械工程学报, 2020, 56(18): 226-234. YU Juntao, JIAO Zongxia, WU Shuai. Design, simulation and test of high-flow high-speed on/off valve driven by piezoelectric[J]. Journal of Mechanical Engineering , 2020, 56(18): 226-234. [8] YAO Jing, WANG Pei, DONG Zhaosheng, et al. A novel architecture of electro-hydrostatic actuator with digital distribution[J]. Chinese Journal of Aeronautics, 2021, 34(5): 224-238. [9] SⅡVONEN L, LINJAMA M, HUOVA M, et al. Jammed on/off valve fault compensation with distributed digital valve system[J]. International Journal of Fluid Power, 2009, 10(2): 73-82. [10] ETERNO J S, WEISS J L, LOOZE D P, et al. Design issues for fault tolerant-restructurable aircraft control[C]//Proceedings of the 24th IEEE Conference on Decision and Control. Fort Lauderdale, USA, 1985: 900-905. [11] KARPENKO M, SEPEHRI N. Fault-tolerant control of a servohydraulic positioning system with crossport leakage[J]. IEEE Transactions on Control Systems Technology, 2004, 13(1): 155-161. [12] NAHIAN S A, TRUONG D Q, CHOWDHURY P, et al. Modeling and fault tolerant control of an electro-hydraulic actuator[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(10): 1285-1297. [13] BLANKE M, KINNAERT M, LUNZE J, et al. Diagnosis and fault-tolerant control[M]. Berlin: Springer, 2006. [14] DAO H V, TRAN D T, AHN K K. Active fault tolerant control system design for hydraulic manipulator with internal leakage faults based on disturbance observer and online adaptive identification[J]. IEEE Access, 2021, 9: 23850-23862. [15] DING Ruqi, CHENG Min, JIANG Lai, et al. Active fault-tolerant control for electro-hydraulic systems with an independent metering valve against valve faults[J]. IEEE Transactions on Industrial Electronics, 2020, 68(8): 7221-7232. [16] PERSSON U, FRITZ K. 728JET Primary flight control system[C]//Proceedings of the 7th Scandinavian International Conference on Fluid Power. Tampere , Finland, 2001: 237-251. [17] LINJAMA M, VILENIUS M. Digital hydraulics-towards perfect valve technology[J]. Ventil-journal for Hydraulics, Automation and Mechatronics, 2008, 14(2): 138-148. [18] WANG Pei, CHENG Yuwang, LINJAMA M, et al. A novel equivalent continuous metering control with a uniform switching strategy for digital valve system[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5): 2449-2460. [19] SⅡVONEN L, PALONⅡTTY M, LINJAMA M, et al. Digital valve system for ITER remote handling–design and prototype testing[J]. Fusion Engineering and Design, 2019, 146: 1637-1641. [20] ESQUE S, SAARINEN H, MUHAMMAD A, et al. ITER divertor maintenance: Development of a control system for the remote handling of the divertor cassette mover[C]//IEEE 22nd Symposium on Fusion Engineering. Albuquerque, New Mexico, 2007: 1-6. [21] PALONⅡTTY M , LINJAMA M. High-linear digital hydraulic valve control by an equal coded valve system and novel switching schemes[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2018, 232(3): 258-269. [22] GAO Qiang, LINJAMA M, PALONⅡTTY M, et al. Investigation on positioning control strategy and switching optimization of an equal coded digital valve system[J]. Proceedings of the Institution of Mechanical Engineers , Part I : Journal of Systems and Control Engineering, 2020, 234(8): 959-972. [23] SⅡVONEN L , LINJAMA M , VILENIUS M. Fault tolerance with digital hydraulic valve system[C]//Proceedings of the 8th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies. Cardiff, UK, 2001: 1250-1262. [24] SⅡVONEN L, LINJAMA M, VILENIUS M. Analysis of fault tolerance of digital hydraulic valve system[C]//Proceedings of the 5th Power Transimission and Motion Control. Bath, UK, 2005: 133-146. [25] SⅡVONEN L , LINJAMA M , VILENIUS M. fault tolerance of digital hydraulic valve system with separately controlled flow paths[C]//Proceedings of the 4th PhD Symposium. Sarasota, 2006: 331-343. [26] SⅡVONEN L, LINJAMA M, LAAMANEN A. Fault tolerant digital valve system and fault tolerant control[C]//Proceedings of the 1st Workshop on Digital Fluid Power. Tampere, Finland, 2008: 77-88. [27] PETTERSSON R. Safety analysis on digital hydraulics: Redundancy study for aviation application[D]. Linköping: Linköping University, 2018. [28] DONKOV V, ANDERSEN T, EBBESEN M K, et al. Investigation of the fault tolerance of digital hydraulic cylinders[C]//Proceedings of the 16th Scandinavian International Conference on Fluid Power. Tampere , Finland, 2019: 22-24. [29] LINJAMA M, VILENIUS M. Energy-efficient motion control of a digital hydraulic joint actuator[C]//Proceedings of the 6th JFPS International Symposium on Fluid Power. Tsukuba, Japan, 2005: 640-645. |