[1] 薛鹏. 无人直升机自动起飞与自动着陆控制技术研究[D]. 南京:南京航空航天大学, 2012. XUE Peng. Research on automatic takeoff and landing control technology for unmanned helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. [2] SPANOUDAKIS P , TSOURVELOUDIS N C , VALAVANIS K P. Design specifications for an unmanned VTOL[C]// Proceedings of the 2004 IEEE International Conference on Robotics and Automation. New Orleans: IEEE Society, 2004: 3616-3621. [3] DO K D, JIANG Z P, PAN J. Global output feedback t racking control of a VTOL aircraft[C]// Proceedings of the 42th IEEE Conference on Decision and Control. Hawaii: IEEE Society, 2003: 4914-4919. [4] 吴鹏飞,石章松,闫鹏浩. 舰载无人直升机自主着舰方 法研究[J]. 舰船科学技术, 2019, 41(5): 148-152. WU Pengfei, SHI Zhangsong, YAN Penghao. Research on the unmanned helicopter carrier landing automatically[J]. Ship Science and Technology, 2019, 41(5): 148-152. [5] CHOI J, CHEON D, LEE J. Robust landing control of a quad copter on a slanted surface[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(6): 1147-1156. [6] RODERICK W R T, CUTKOSKY M R, LENTINK D. Bird-inspired dynamic grasping and perching in arboreal environments[J]. Science Robotics, 2021, 6(61): eabj7562. [7] KIM K, SPIELER P, LUPU E S, et al. A bipedal walking robot that can fly, slackline, and skateboard[J]. Science Robotics, 2021, 6(59): eabf8136. [8] DARPA. Robotic landing gear could enable future helicopters to take off and land almost anywhere[N]. Darpa Mil, 2015-9-13. [9] LEO C, LEON B, WACHLIN J, et al. Cable-driven four-bar link robotic landing gear mechanism : rapid design and survivability testing[C]// 2018 AIAA/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, 2018. [10] LEO C, LEON B, WACHLIN J, et al. Design of a crashworthy cable-driven four-bar link robotic landing gear system[J]. Journal of Aircraft, 2020, 57(2): 224-244. [11] 任佳,王计真,刘小川,复杂地形条件下的着陆设计与 控制仿真[J]. 航空科学技术, 2020, 31(9): 84-90. REN Jia, WANG Jizhen, LIU Xiaochuan. Landing design and control simulation in complex terrain conditions[J]. Aeronautical Science & Technology, 2020, 31 (9): 84-90. [12] 刘昊林,刘小川,任佳,等,仿生腿式地形自适应起落架 构型与动力学分析[J]. 装备环境工程, 2022, 19(9): 25-31. LIU Haolin, LIU Xiaochuan, REN Jia, et al. Mechanism configuration and dynamic analysis of bionic legged terrain adaptive landing gear[J]. Equipment Environment Engineering, 2022, 19(9): 25-31. [13] 贾拴立. 直升机自适应性机器起落架设计与分析[D]. 哈尔滨:哈尔滨工业大学, 2020. JIA Shuanli. Design and analysis of adaptive machine landing gear for helicopters[D]. Harbin: Harbin Institute of Technology, 2020. [14] 庄红超. 电驱动大负重比六足机器人结构设计及其移 动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHUANG Hongchao. Electrically driven large-load-ratio six-legged robot structural design and its mobile characteristics research[D]. Harbin: Harbin Institute of Technology, 2014. [15] 张金柱,金振林,张哲. 六足机器人整机运动学分析及 构型选择[J]. 光学精密工程, 2017, 25(7): 1832-1842. ZHANG Jinzhu, JIN Zhenlin, ZHANG Zhe. Kinematics and analysis and configuration selection of whole machine of hexapod robot[J]. Optics and Precision Engineering, 2017, 25(7): 1832-1842. [16] 高峰. 机构学研究现状与发展趋势的思考[J]. 机械工 程学报, 2005, 41(8): 3-16. GAO Feng. Reflection on the current status and development strategy of mechanism research[J]. Journal of Mechanical Engineering, 2005, 41(8): 3-16. [17] 张春阳,江先志. 六足机器人步态规划及其静态稳定性 研究[J]. 成组技术与生产现代化, 2016, 33(2): 40-47. ZHANG Chunyang , JIANG Xianzhi. Research on planning and static stability of hexapod robot gait[J]. Group Technology & Production Modernization, 2016, 33(2): 40-47. [18] HE W, DONG Y, SUN C. Adaptive neural impedance control of a robotic manipulator with input saturation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 46(3): 334-344. [19] 高保方,曾国贵,廖智麟,等. 小型无人直升机自动起 降控制技术研究及验证[J]. 直升机技术, 2013, 177(4): 10-14. GAO Baofang, ZENG Guogui, LIAO Zhilin, et al. Auto-takeoff and auto-landing control design for small unmanned helicopter[J]. Helicopter Technology, 2013, 177(4): 10-14. [20] 高峰,尹科,孙乔,等. 探月足式飞跃机器人设计与控 制[J]. 飞控与探测, 2020, 3(4): 1-7. GAO Feng, YIN Ke, SUN Qiao, et al. Design and control of legged leaping robot in lunar exploration[J]. Flight Control & Detection, 2020, 3(4): 1-7. [21] 陈培华,曹其新. 基于逆动力学方法的关节型机器人轨 迹控制[J]. 华中科技大学学报(自然科学版), 2013, 41 (增刊 1): 17-24. CHEN Peihua, CAO Qixin. Trajectory control of the articulated robot based on inverse dynamics[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(Suppl1): 17-24. [22] JUNG S, HSIA T C, BONITZ R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 474-483. [23] 李泽国,李国栋. 基于神经网络重力前馈补偿的柔性关 节机器人分层控制[J]. 天津科技大学学报, 2017, 32 (6): 53-58. LI Zeguo, LI Guodong. Hierarchical control of flexiblejoint robot with gravity feed-forward compensation based on neural network[J]. Journal of Tianjin University of Science & Technology, 2017, 32(6): 53-58. [24] 李文华. 小型无人直升机飞控系统及地面通信平台设 计与实现[D]. 南昌:南昌航空大学, 2017. LI Wenhua. Design and implementation of a small unmanned helicopter flight control system and ground communication platform[D]. Nanchang : Nanchang Hangkong University, 2017. [25] 魏源源. 无人直升机飞行控制系统设计与工程实现[D]. 南京:南京航空航天大学, 2016. WEI Yuanyuan. Flight control system design and engineering implementation of an unmanned helicopter[D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2016. [26] WANG Qiang, LI Zhang, LUCA B, et al. Fast online object tracking and segmentation : A unifying approach[C]// Proceedings of the IEEE /CVF Conference on Computer Vision and Pattern Recognition, 2019. [27] 李靖,马晓东,陈怀民,等. 无人机视觉导航着陆地标 实时检测跟踪方法[J]. 西北工业大学学报, 2018, 36(2): 294-301. LI Jing, MA Xiaodong, CHEN Huaimin, et al. Real-time detection and tracking method of UAV visual navigation landmark[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 294-301. [28] 谢勤伟,姜年朝,周光明,等. 某无人直升机机身框架 动力学计算与试验研究[J]. 噪声与振动控制, 2012, 8(4): 34-37. XIE Qinwei, JIANG Nianzhao, ZHOU Guangming, et al. Finite element analysis and test on dynamic characteristics of fuselage frame of unmanned helicopter[J]. Noise and Vibration Control, 2012, 8(4): 34-37. |