[1] 杨国伟,魏宇杰,赵桂林,等. 高速列车的关键力学问 题[J]. 力学进展, 2015, 45: 217-460. YANG Guowei , WEI Yujie , ZHAO Guilin , et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45: 217-460. [2] 薛翊国,孔凡猛,杨为民,等. 川藏铁路沿线主要不良 地质条件与工程地质问题[J]. 岩石力学与工程学报, 2020, 39(3): 445-468. XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. [3] LU C , CAI C. Challenges and countermeasures for construction safety during the Sichuan-Tibet railway project[J]. Engineering, 2019, 5(5): 833-838. [4] WANG S, ZHANG W, HUANG J, et al. Adhesion control of heavy-duty locomotive based on axle traction control system[J]. IEEE Access, 2019, 7: 164614-164622. [5] 罗仁,曾京. 铁道车辆防滑控制仿真[J]. 机械工程学 报, 2008(3): 29-34. LUO Ren, ZENG Jing. Anti-sliding control simulation of railway vehicle braking[J]. Journal of Mechanical Engineering, 2008(3): 29-34. [6] YANG Y, GUO X, SUN Y, et al. Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions[J]. Vehicle System Dynamics, 2022, 60(6): 2167-2189. [7] 马天和,吴萌岭,田春. 基于黏着力观测器的列车空气 制动防滑控制[J]. 同济大学学报(自然科学版), 2020, 48(11): 1668-1675. MA Tianhe , WU Mengling, TIAN Chun. Anti-skid control based on adhesion force observer for train pneumatic braking[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1668-1675. [8] 姚远,张红军,罗赟,等. 基于虚拟样机的机车黏着控 制研究[J]. 铁道学报, 2010, 32(6): 96-100. YAO Yuan, ZHANG Hongjun, LUO Yun, et al. Adhesion control of locomotive based on virtual prototype[J]. Journal of the China Railway Society, 2010, 32(6): 96-100. [9] ZIREK A, VOLTR P, LATA M, et al. An adaptive sliding mode control to stabilize wheel slip and improve traction performance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2392-2405. [10] GAO R Z, WANG Y J, LAI J F, et al. Neuro-adaptive fault-tolerant control of high speed trains under traction-braking failures using self-structuring neural networks[J]. Information Sciences, 2016, 367: 449-462. [11] YANG Y, LING L, ZHANG T, et al. An advanced antislip control algorithm for locomotives under complex friction conditions[J]. Journal of Computational and Nonlinear Dynamics, 2021, 16(10): 4051822. [12] GUAN H, WANG B, LU P, et al. Identification of maximum road friction coefficient and optimal slip ratio based on road type recognition[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 1018-1026. [13] LIN W, LIU Z, DIAO L, et al. Maximum adhesion force control simulated model of electric locomotive[C]// IEEE International Conference on Automation and Logistics, 2007: 1704-1708. [14] SADR S, KHABURI D A, RODRIGUEZ J. Predictive slip control for electrical trains[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3446-3457. [15] 吴业庆,赵旭峰,喻励志,等. 基于最优蠕滑辨识的高 速列车黏着控制研究[J]. 机车电传动, 2020(2): 12-16. WU Yeqing, ZHAO Xufeng, YU Lizhi, et al. Research on adhesion control based on optimal creep identification of high-speed train[J]. Electric Drive for Locomotives, 2020(2): 12-16. [16] 赵凯辉,李燕飞,张昌凡,等. 重载机车滑模极值搜索 最优粘着控制研究[J]. 电子测量与仪器学报, 2018, 32(3): 88-95. ZHAO Kaihui, LI Yanfei, ZHANG Changfan, et al. Optimal adhesion control for heavy-haul locomotive based on extremum seeking with sliding mode[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(3): 88-95. [17] HUSSAIN I, MEI T X, RITCHINGS R T. Estimation of wheel-rail contact conditions and adhesion using the multiple model approach[J]. Vehicle System Dynamics, 2013, 51(1): 32-53. [18] SPIRYAGIN M, SUN Y Q, COLE C, et al. Development of traction control for hauling locomotives[J]. Journal of System Design and Dynamics, 2011, 5(6): 1214-1225. [19] 翟婉明. 车辆-轨道耦合动力学[M]. 4 版. 北京:科学 出版社, 2015. ZHAI Wanming. Vehicle-track coupled dynamics[M]. 4th ed. Beijing: Science Press, 2015. [20] POLACH O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005, 258(7-8): 992-1000. [21] 雷延显. 基于最小二乘法估计粘滑曲线斜率的高速动 车粘着控制方法研究[D]. 兰州:兰州交通大学, 2019. LEI Yanxian. Study on adhesion control method of high speed motor vehicle based on least square method to estimate the slope of adhesion-slip curve[D]. Lanzhou: Lanzhou Jiaotong University, 2019. [22] 王文健,郭俊,刘启跃. 不同介质作用下轮轨粘着特性 研究[J]. 机械工程学报, 2012, 48(7): 100-104. WANG Wenjian, GUO Jun, LIU Qiyue. Study on adhesion characteristic of wheel/rail under different medium conditions[J]. Journal of Mechanical Engineering, 2012, 48(7): 100-104. [23] 汪洪. 第三介质条件下轮轨粘着特性研究[D]. 成都: 西 南交通大学, 2013. WANG Hong. Investigation on adhesion characteristic of wheel/rail under third medium conditions[D]. Chengdu: Southwest Jiaotong University, 2013. [24] WANG W J, SHEN P, SONG J H, et al. Experimental study on adhesion behavior of wheel/rail under dry and water conditions[J]. Wear, 2011, 271(9-10): 2699-2705. [25] SIVANANDAM S N, SUMATHI S, DEEPA S N. Introduction to fuzzy logic using MATLAB[M]. Berlin: Springer, 2007. |