[1] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660. [2] QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30: 5099-5108. [3] SHI S, WANG X, LI H. Pointrcnn: 3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 770-779. [4] YANG Z, SUN Y, LIU S, et al. Std: Sparse-to-dense 3D object detector for point cloud[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1951-1960. [5] 刘永刚,于丰宁,章新杰,等. 基于激光点云与图像融 合的 3D 目标检测研究[J]. 机械工程学报, 2022, 58(24): 289-299. LIU Yonggang, YU Fengning, ZHANG Xinjie, et al. Research on 3D object detection based on laser point cloud and image fusion[J]. Journal of Mechanical Engineering, 2012, 58(24): 289-299. [6] SHI W, RAJKUMAR R. Point-GNN: Graph neural network for 3D object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1711-1719. [7] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model cnns[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 5115-5124. [8] ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4490-4499. [9] YAN Y, MAO Y, LI B. Second: Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337. [10] LANG A H, VORA S, CAESAR H, et al. Pointpillars: Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 12697-12705. [11] YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 11784-11793. [12] WANG Y, FATHI A, KUNDU A, et al. Pillar-based object detection for autonomous driving[C]//Computer Vision-ECCV 2020 : 16th European Conference , Glasgow, UK, August 23-28, 2020, Proceedings, Part XXⅡ 16. Springer International Publishing, 2020: 18-34. [13] 郑少武,李巍华,陈泽涛,等. 一种基于多线激光雷达 的赛道锥桶检测及目标点追踪方法: CN110780305A [P]. 2020-02-11. ZHENG Shaowu, LI Weihua, CHEN Zetao, et al. A method of track cone barrel detection and target point tracking based on multi-line laser radar: CN110780305A [P]. 2020-02-11. [14] 黄瑞钦,梁洪波,李强,等. 基于改进欧氏聚类的锥桶 检测方法与试验[J]. 应用激光, 2022, 42(10): 126-134. HUANG Ruiqin, LIANG Hongbo, LI Qiang, et al. Based on improved Euclidean cluster cone drum test method and test[J]. Applied Laser, 2022, 42(10) : 126-134. [15] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. [16] SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 2446-2454. [17] KATSAMENIS I, KAROLOU E E, DAVRADOU A, et al. TraCon: A novel dataset for real-time traffic cones detection using deep learning[C]//Novel & Intelligent Digital Systems Conferences. Cham: Springer International Publishing, 2022: 382-391. [18] LI E, WANG S, LI C, et al. Sustech points: A portable 3d point cloud interactive annotation platform system[C]//2020 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2020: 1108-1115. [19] QUIGLEY M, CONLEY K, GERKEY B, et al. ROS: An open-source robot operating system[C]//ICRA Workshop on Open Source Software. 2009, 3(3.2): 5. [20] FISCHLER M A , BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. [21] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517. [22] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [23] IOFFE S , SZEGEDY C. Batch normalization : Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. PMLR, 2015: 448-456. [24] HAN J, MORAGA C. The influence of the sigmoid function parameters on the speed of backpropagation learning[C]//From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks Malaga-Torremolinos, Spain, June 7-9, 1995 Proceedings 3. Springer Berlin Heidelberg , 1995 : 195-201. [25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2017: 2980-2988. [26] SHI S, WANG Z, SHI J, et al. From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(8): 2647-2664. [27] DENG J, SHI S, LI P, et al. Voxel R-CNN: Towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(2): 1201-1209. [28] SHI S, GUO C, JIANG L, et al. Pv-rcnn: Point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10529-10538. [29] WU H, WEN C, LI W, et al. Transformation-equivariant 3D object detection for autonomous driving[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(3): 2795-2802. [30] WU H, DENG J, WEN C, et al. CasA: A cascade attention network for 3D object detection from lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. [31] XIA Q, CHEN Y, CAI G, et al. 3D HANet: A flexible 3D heatmap auxiliary network for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-13. [32] YANG H, HE T, LIU J, et al. GD-MAE: Generative decoder for mae pre-training on lidar point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 9403-9414. [33] HU J , SHEN L , SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7132-7141. [34] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19. [35] ZHANG Q L, YANG Y B. Sa-net: Shuffle attention for deep convolutional neural networks[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2021: 2235-2239. [36] HUANG Z, WANG X, HUANG L, et al. Ccnet: Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 603-612. [37] YANG L, ZHANG R Y, LI L, et al. Simam: A simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning. PMLR, 2021: 11863-11874. [38] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 13713-13722. [39] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 11534-11542. |