[1] 张勇,陈子壮,袁少波,等. 焊接接头疲劳评价进展[J]. 兵器材料科学与工程, 2023, 46: 134-141. ZHANG Yong, CHEN Zizhuang, YUAN Shaobo, et al. Progress in fatigue evaluation of welded joints[J]. Ordnance Material Science and Engineering, 2023, 46: 134-141. [2] 杨建国,郝建松,李曰兵,等. 含表面裂纹焊接结构疲 劳评定的质量等级方法[J]. 机械工程学报, 2018, 54(14): 82-89. YANG Jianguo, HAO Jiansong, LI Yuebing, et al. Quality grade method for fatigue evaluation of welded structures with surface cracks[J]. Journal of Mechanical Engineering, 2018, 54(14): 82-89. [3] LIU X, LEI L, XING S, et al. A post-processing procedure for predicting high-and low-cycle fatigue life of welded structures based on the master E-N curve[J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46(9): 3387-3403. [4] 周海波,蒋翔,葛珅玮. 船舶焊接结构件的疲劳特性 分 析 与 结 构 设 计[J]. 舰 船 科 学 技 术 , 2023, 45: 186-189. ZHOU Haibo, JIANG Xiang, GE Shenwei. Fatigue characteristics analysis and structural design of welded structural parts of ships[J]. Ship Science and Technology, 2023, 45: 186-189. [5] 汤之南,蔡志鹏,吴健栋. 热影响区元素晶界偏聚对焊 接构件低周疲劳性能的影响[J]. 机械工程学报, 2015, 51(14): 78-85. TANG Zhinan, CAI Zhipeng, WU Jiandong. Effect of grain boundary segregation of heat affected zone elements on low cycle fatigue properties of welded components[J]. Journal of Mechanical Engineering, 2015, 51(14): 78-85. [6] ZHU S, YUE P, YU Z, et al. A combined high and low cycle fatigue model for life prediction of turbine blades[J]. Materials, 2017, 10(7): 698. [7] 王苹,裴宪军,钱宏亮,等. 焊接结构抗疲劳设计新方 法与应用[J]. 机械工程学报, 2021, 57(16): 349-360. WANG Ping, PEI Xianjun, QIAN Hongliang, et al. New methods and applications for fatigue resistance design of welded structures[J]. Journal of Mechanical Engineering, 2021, 57(16): 349-360. [8] MENEGHETTI G, LAZZARIN P. The peak stress method for fatigue strength assessment of welded joints with weld toe or weld root failures[J]. Welding in the World, 2011, 55: 22-29. [9] HAIBACH E. Fatigue strength of welded joints from viewpoint of local strain measurement[J]. Report FB-77, Fraunhofer-Institut für Betriebsfestigkeit (LBF) , Darmstadt, 1968: 1-63. [10] 周强,张群,姬存民,等. 基于热点应力法和结构应力 法的保温支撑圈焊接接头疲劳评估及对比[J]. 化工设 备与管道, 2023, 60: 6-13. ZHOU Qiang, ZHANG Qun, JI Cunmin, et al. Fatigue evaluation and comparison of welded joints of thermal insulation support rings based on hot spot stress method and structural stress method[J]. Chemical Equipment and Pipelines, 2023, 60: 6-13. [11] 彭凡,姚云建,顾勇军. 考虑热点应力梯度的焊接接头 疲劳评定[J]. 机械工程学报, 2010, 46(22): 65-69. PENG Fan , YAO Yunjian , GU Yongjun. Fatigue evaluation of welded joints considering hot spot Stress gradient[J]. Journal of Mechanical Engineering, 2010, 46(22): 65-69. [12] FRICKE W. ⅡW recommendations for the fatigue assessment of welded structures by notch stress analysis: ⅡW-2006-09[M]. Cambridge: Woodhead Publishing, 2012. [13] MADDOX S. Hot-spot stress design curves for fatigue assessment of welded structures[J]. International Journal of Offshore and Polar Engineering, 2002, 12(2): 134-141. [14] VIANA C O, CARVALHO H, CORREIA J, et al. Fatigue assessment based on hot-spot stresses obtained from the global dynamic analysis and local static sub-model[J]. International Journal of Structural Integrity, 2021, 12(1): 31-47. [15] RADAJ D , SONSINO C M , FRICKE W. Fatigue assessment of welded joints by local approaches[M]. Cambridge: Woodhead Publishing, 2006. [16] RADAJ D , SONSINO C , FRICKE W. Recent developments in local concepts of fatigue assessment of welded joints[J]. International Journal of Fatigue, 2009, 31(1): 2-11. [17] KARAKAS Ö. Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts[J]. International Journal of Fatigue, 2013, 49: 1-17. [18] KARAKAŞ Ö, BAUMGARTNER J, SUSMEL L. On the use of a fictitious notch radius equal to 0.3 mm to design against fatigue welded joints made of wrought magnesium alloy AZ31[J]. International Journal of Fatigue, 2020, 139: 105747. [19] ZHOU W, DONG P, PEI X, et al. Evaluation of magnesium weldment fatigue data using traction and notch stress methods[J]. International Journal of Fatigue, 2020, 138: 105695. [20] XIAO Z G, YAMADA K. A method of determining geometric stress for fatigue strength evaluation of steel welded joints[J]. International Journal of Fatigue, 2004, 26(12): 1277-1293. [21] WEI Z, PEI X, JIN H. Evaluation of welded cast steel joint fatigue data using structural stress methods[J]. Journal of Constructional Steel Research, 2021, 186: 106895. [22] DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876. [23] DONG P, HONG J. The master SN curve approach to fatigue of piping and vessel welds[J]. Welding in the World, 2004, 48: 28-36. [24] 樊俊铃. 基于能量耗散的 Q235 钢高周疲劳性能评 估[J]. 机械工程学报, 2018, 54(6): 1-9. FAN Junling. High cycle fatigue performance evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1-9. [25] LAZZARIN P , TOVO R. A notch intensity factor approach to the stress analysis of welds[J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21(9): 1089-1103. [26] LAZZARIN P, LIVIERI P. Notch stress intensity factors and fatigue strength of aluminium and steel welded joints[J]. International Journal of Fatigue, 2001, 23(3): 225-232. [27] 陈超核,杨跃富,李平,等. 海洋结构物腐蚀损伤及腐 蚀疲劳评估方法研究综述[J]. 船舶力学, 2023, 27: 1413-1429. CHEN Chaohe, YANG Yuefu, LI Ping, et al. Review of corrosion damage and corrosion fatigue evaluation methods for marine structures[J]. Ship Mechanics, 2023, 27: 1413-1429. [28] SONG W, LIU X, ZHOU G, et al. Notch energy-based low and high cycle fatigue assessment of load-carrying cruciform welded joints considering the strength mismatch[J]. International Journal of Fatigue, 2021, 151: 106410. [29] FENG L, QIAN X. A hot-spot energy indicator for welded plate connections under cyclic axial loading and bending[J]. Engineering Structures, 2017, 147: 598-612. [30] RADAJ D, SONSINO C, FLADE D. Prediction of service fatigue strength of a welded tubular joint on the basis of the notch strain approach[J]. International Journal of Fatigue, 1998, 20(6): 471-480. [31] 钱令希. 余能理论[J]. 中国科学, 1950, 1: 449-456. QIAN Lingxi. The theory of residual energy[J]. Science in China, 1950, 1: 449-456. [32] GERE J M, GOODNO B J. Mechanics of materials[M]. Stamford: Cengage Learning, 2012. [33] ANDERSON T L. Fracture mechanics: Fundamentals and applications[M]. Boca Raton: CRC Press, 1991. [34] KOROBEYNIKOV S, LARICHKIN A Y, ROTANOVA T. Hyperelasticity models extending Hooke’s law from small to moderate strains and experimental verification of their scope of application[J]. International Journal of Solids and Structures, 2022, 252: 111815. [35] DUNNE F, PETRINIC N. Introduction to computational plasticity[M]. Oxford: OUP Oxford, 2005. [36] BAHMANI A, FARAHMAND F, JANBAZ M, et al. On the comparison of two mixed-mode I+ Ⅲ fracture test specimens[J]. Engineering Fracture Mechanics, 2021, 241: 107434. [37] BRESLOW N E. Generalized linear models: Checking assumptions and strengthening conclusions[J]. Statistica Applicata, 1996, 8(1): 23-41. [38] RAMBERG W , OSGOOD W R. Description of stress-strain curves by three parameters[R]. National Advisory Committee for Aeronautics, 1943. [39] BAI L, WADEE M A, KÖLLNER A, et al. Variational modelling of local-global mode interaction in long rectangular hollow section struts with Ramberg-Osgood type material nonlinearity[J]. International Journal of Mechanical Sciences, 2021, 209: 106691. [40] PEI X, DONG P. An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects[J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42(1): 239-255. [41] 杜志钢,魏昕,杨宇辉,等. 42CrMo 钢超声滚压残余 应力及等效塑性应变研究[J]. 塑性工程学报, 2023, 30: 141-149. DU Zhigang, WEI Xin, YANG Yuhui, et al. Study on residual stress and equivalent plastic strain in ultrasonic rolling of 42CrMo steel[J]. Journal of Plasticity Engineering, 2023, 30: 141-149. [42] MADENCI E , OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von-Mises yield criteria with isotropic hardening[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 192-219. [43] SIMO J C, HUGHES T J. Computational inelasticity[M]. New York: Springer Science & Business Media, 2006. [44] PEI X, RAVI S K, DONG P, et al. A multi-axial vibration fatigue evaluation procedure for welded structures in frequency domain[J]. Mechanical Systems and Signal Processing, 2022, 167: 108516. [45] KIM M. A structural strain method for low-cycle fatigue evaluation of welded components[J]. International Journal of Pressure Vessels and Piping, 2014, 119: 39-51. [46] MOSER S, VORMWALD M. Structural strain approach to assess thermo-mechanical fatigue of thin-walled welded joints[J]. International Journal of Fatigue, 2020, 139: 105722. [47] DONG Y, GARBATOV Y, SOARES C G. Improved effective notch strain approach for fatigue reliability assessment of load-carrying fillet welded cruciform joints in low and high cycle fatigue[J]. Marine Structures, 2021, 75: 102849. [48] GUO W , WANG C , ROSE L. The influence of cross-sectional thickness on fatigue crack growth[J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(5): 437-444. [49] LÜ S, XIA C, LIU C, et al. Fatigue equation for asphalt mixture under low temperature and low loading frequency conditions[J]. Construction and Building Materials, 2019, 211: 1085-1093. [50] KYUBA H, DONG P. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint[J]. International Journal of Fatigue, 2005, 27(1): 85-94. [51] DONG P, HONG J K, DE JESUS A M. Analysis of recent fatigue data using the structural stress procedure in ASME Div 2 rewrite[J]. Journal of Pressure Vessel Technology, 2007, 129: 355-362. [52] DONG P, HONG J. A robust structural stress parameter for evaluation of multiaxial fatigue of weldments[J]. Journal of ASTM International, 2006, 3(7): 1-17. [53] DONG P, HONG J, CAO Z. Stresses and stress intensities at notches: “anomalous crack growth” revisited[J]. International Journal of Fatigue, 2003, 25(9-11): 811-825. [54] MURAKAMI Y, TAKAGI T, WADA K, et al. Essential structure of SN curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138. [55] INSTITUTE W. Fatigue performance of welded high strength steels: a compendium of reports from a sponsored research programme[M]. Cambridge: Welding Institute, 1974. [56] PEI X, LI X, ZHAO S, et al. Low cycle fatigue evaluation of welded structures with arbitrary stress-strain curve considering stress triaxiality effect[J]. International Journal of Fatigue, 2022, 162: 106969. [57] XING S, DONG P, THRESTHA A. Analysis of fatigue failure mode transition in load-carrying fillet-welded connections[J]. Marine Structures, 2016, 46: 102-126. [58] XING S, PEI X, MEI J, et al. Weld toe versus root fatigue failure mode and governing parameters : A study of aluminum alloy load-carrying fillet joints[J]. Marine Structures, 2023, 88: 103344. [59] XING S, DONG P. Fatigue of titanium weldments: SN testing and analysis for data transferability among different joint types[J]. Marine Structures, 2017, 53: 1-19. [60] KARAKAŞ Ö. Application of Neuber’s effective stress method for the evaluation of the fatigue behaviour of magnesium welds[J]. International Journal of Fatigue, 2017, 101: 115-126. [61] CORIGLIANO P, CRUPI V, PEI X, et al. DIC-based structural strain approach for low-cycle fatigue assessment of AA 5083 welded joints[J]. Theoretical and Applied Fracture Mechanics, 2021, 116: 103090. [62] HINNANT C, PAULIN T. Experimental evaluation of the markl fatigue methods and ASME piping stress intensification factors[C]//ASME Pressure Vessels and Piping Conference, 2008, 48241: 97-113 [63] WANG P, PEI X, DONG P, et al. Analysis of weld root fatigue cracking in load-carrying high-strength aluminum alloy cruciform joints[J]. International Journal of Fatigue, 2020, 139: 105735. [64] CORIGLIANO P , CRUPI V , FRICKE W , et al. Experimental and numerical analysis of fillet-welded joints under low-cycle fatigue loading by means of full-field techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(7): 1327-1338. [65] SCAVUZZO R, SRIVATSAN T, LAM P. Report 1: Fatigue of butt-welded pipe[J]. WRC Bulletin, 1998: 1-56. [66] ASME Boiler and Pressure Vessel Code , Rules for construction of pressure vessels[S]. New York: ASME, 2019. [67] British Standard, Guide to fatigue design and assessment of steel products[S]. London: BSI Standards Publication, 2014. [68] HOBBACHER A. Recommendations for fatigue design of welded joints and components[M]. Cham: Springer, 2016. [69] PEI X, DONG P, KIM M H. A simplified structural strain method for low-cycle fatigue evaluation of girth-welded pipe components[J]. International Journal of Fatigue, 2020, 139: 105732. |