[1] BISEN A, PAYAL H. Collaborative robots for industrial tasks: A review[J]. Materials Today: Proceedings, 2022, 52: 500-504. [2] 王耀南,江一鸣,姜娇,等. 机器人感知与控制关键技 术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494-513. WANG Yaonan, JIANG Yiming, JIANG Jiao, et al. Key technologies of robot perception and control and its intelligent manufacturing applications[J]. Acta Automatica Sinica, 2023, 49(3): 494-513. [3] 陶永,兰江波,刘海涛,等. 基于滑模和模糊算法相融 合的人机协作机器人轨迹跟踪方法[J]. 机械工程学报, 2022, 58(18): 181-191. TAO Yong, LAN Jiangbo, LIU Haitao, et al. Cooperative robot trajectory tracking control method based on the fusion of sliding mode control and fuzzy algorithm[J]. Journal of Mechanical Engineering , 2022 , 58(18) : 181-191. [4] 杨赓, 周慧颖, 王柏村. 数字孪生驱动的智能人机协作: 理论、技术与应用[J]. 机械工程学报, 2022, 58(18): 279-291. YANG Geng, ZHOU Huiying, WANG Baicun. Digital twin-driven smart human-machine collaboration: Theory, enabling technologies and applications[J]. Journal of Mechanical Engineering, 2022, 58(18): 279-291. [5] BDIWI M, PFEIFER M, STERZING A. A new strategy for ensuring human safety during various levels of interaction with industrial robots[J]. CIRP Annals, 2017, 66(1): 453-456. [6] 石大为. 面向机器人装配的人机协作安全防护关键技 术研究[D]. 沈阳:东北大学, 2020. SHI Dawei. Research on the key technologies of human machine cooperative safety protection for robot assembly [D]. Shenyang: Northeastern University, 2020. [7] HADDADIN S, ALBU-SCHAFFER A, DE LUCA A, et al. Collision detection and reaction: A contribution to safe physical human-robot interaction[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2008: 3356-3363. [8] LU S, CHUNG J H, VELINSKY S A. Human-robot collision detection and identification based on wrist and base force/torque sensors[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. New York: IEEE, 2005: 3796-3801. [9] DE LUCA A, ALBU-SCHAFFER A, HADDADIN S, et al. Collision detection and safe reaction with the DLR-Ⅲ lightweight manipulator arm[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2006: 1623-1630. [10] 张建华,蔡灿,刘璇,等. 基于二阶前馈外力观测器的 机械臂碰撞策略[J]. 计算机集成制造系统, 2019, 25(7): 1775-1783. ZHANG Jianhua, CAI Can, LIU Xuan, et al. Manipulator collision strategy based on second-order feedforward external force observer[J]. Computer Integrated Manufacturing Systems, 2019, 25(7): 1775-1783. [11] 谢峰,李红杨,甄圣超,等. 基于带通滤波二阶动量观 测器的机器人碰撞检测[J]. 机械工程学报, 2024, 60(21): 99-111. XIE Feng, LI Hongyang, ZHEN Shengchao, et al. Robot collision detection based on bandpass filtered second-order momentum observer[J]. Journal of Mechanical Engineering, 2024, 60(21): 99-111. [12] LASOTA P A, FONG T, SHAH J A. A survey of methods for safe human-robot interaction[J]. Foundations and Trends in Robotics, 2017, 5(4): 261-349. [13] 黄沿江,汪子钦,张宪民,等. 人与机器人共存中的位 姿估计与碰撞检测[J]. 机器人, 2022, 44(3): 281-290. HUANG Yanjiang, WANG Ziqin, ZHANG Xianmin, et al. Pose estimation and collision detection in human-robot coexistence[J]. Robot, 2022, 44(3): 281-290. [14] SAFEEA M, NETO P. Minimum distance calculation using laser scanner and IMUs for safe human-robot interaction[J]. Robotics and Computer-Integrated Manufacturing, 2019, 58: 33-42. [15] 席明磊. 基于深度学习的人机协作安全方法研究[D]. 天津:天津理工大学, 2022. XI Minglei. Research on human-computer collaboration security based on deep learning[D]. Tianjin : Tianjin University of Technology, 2022. [16] 涂武强. 基于人体动作识别的人机协作安全策略研 究[D]. 哈尔滨:哈尔滨工业大学, 2020. TU Wuqiang. Research on safety strategy of human-robot cooperation based on human motion recognition[D]. Harbin: Harbin Institute of Technology, 2020. [17] KALDESTAD K B, HADDADIN S, BELDER R, et al. Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2014: 3250-3257. [18] FABRIZIO F, DE LUCA A. Real-time computation of distance to dynamic obstacles with multiple depth sensors[J]. IEEE Robotics and Automation Letters, 2016, 2(1): 56-63. [19] BALAN L, BONE G M. Real-time 3D collision avoidance method for safe human and robot coexistence[C]// 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2006: 276-282. [20] LIU C, TOMIZUKA M. Algorithmic safety measures for intelligent industrial co-robots[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2016: 3095-3102. [21] OUYANG F, ZHANG T. Virtual velocity vector-based offline collision-free path planning of industrial robotic manipulator[J]. International Journal of Advanced Robotic Systems, 2015, 12(9): 129. [22] KUHN S, HENRICH D. Fast vision-based minimum distance determination between known and unkown objects[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2007: 2186-2191. [23] FANG C, ROCCHI A, HOFFMAN E M, et al. Efficient self-collision avoidance based on focus of interest for humanoid robots[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots(Humanoids). New York: IEEE, 2015: 1060-1066. [24] AFAGHANI A Y , AIYAMA Y. On-line collision avoidance between two robot manipulators using collision map and simple escaping method[C]//Proceedings of the 2013 IEEE/SICE International Symposium on System Integration. New York: IEEE, 2013: 105-110. [25] FLACCO F, KRÖGER T, DE LUCA A, et al. A depth space approach to human-robot collision avoidance[C]//2012 IEEE International Conference on Robotics and Automation. New York: IEEE, 2012: 338-345. [26] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]//Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, 2014: 740-755. [27] LIU J, SHAHROUDY A, PEREZ M, et al. Ntu RGB+D 120: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2684-2701. [28] 朱瑛,谢睿,郑若池. 基于节点匹配代价优化的随机森 林算法[J]. 计算机工程与设计, 2020, 41(11): 3106-3111. ZHU Ying, XIE Rui, ZHENG Ruochi. Optimization of random forest algorithm based on nodes matching cost[J]. Computer Engineering and Design , 2020 , 41(11) : 3106-3111. [29] 李晨光. 基于 KinectV2 的人体姿态识别研究[D]. 秦皇 岛:燕山大学, 2021. LI Chenguang. Research on human posture recognition based on KinectV2[D]. Qinhuangdao: Yanshan University, 2021. [30] 于文斐. 基于虚拟现实技术的碰撞检测算法综述[J]. 民航学报, 2019, 3(4): 85-87, 96. YU Wenfei. Overview of collision detection algorithms based on virtual reality technology[J]. Journal of Civil Aviation, 2019, 3(4): 85-87, 96. [31] 徐硕. 基于 Kinect 多视角点云的人体三维重建系统研 究[D]. 武汉:武汉纺织大学, 2023. XU Shuo. Research on human 3D reconstruction system based on kinect multi-view point cloud[D]. Wuhan: Wuhan Textile University, 2023. |