[1] 汪博,高培鑫,马辉,等. 航空发动机管路系统动力学 特性综述[J]. 航空学报, 2022, 43(5): 139-162. WANG Bo, GAO Peixin, MA Hui, et al. Dynamic characteristics of aero-engine pipeline system: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 139-162. [2] 谢岳城. 空间大型弯曲圆钢管加工误差理论研究[D]. 杭州:浙江大学, 2016. XIE Yuecheng. The research on the processing error theory of the large-scale bending steel pipes[D]. Hangzhou: Zhejiang University, 2016. [3] 张深,吴建军. 空间弯管的回弹预测[J]. 航空学报, 2011, 32(5): 953-960. ZHANG Shen, WU Jianjun. Spring-back prediction of non-planar tube bending[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 953-960. [4] 张入丹. 飞机液压管路支撑部件的装配偏差可行域研 究[D]. 西安:西安电子科技大学, 2022. ZHANG Rudan. Research on the feasible region of assembly deviation of aircraft hydraulic pipe support components[D]. Xi’an: Xidian University, 2022. [5] 张旭. 装配状态对管道密封特性影响分析与试验研 究[D]. 南京:南京航空航天大学, 2019. ZHANG Xu. Analysis and experimental research on the influence of assembly status on pipeline sealing characteristics[D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2019. [6] 夏芝玮,樊新田,赵旭升,等. 飞机液压管路系统密封 性的多因素影响规律仿真分析[J]. 航空精密制造技术, 2021, 57(3): 5-10. XIA Zhiwei, FAN Xintian, ZHAO Xusheng, et al. Simulation and analysis of multi-factor influencing law of pipe sealing in aircraft hydraulic system[J]. Aviation Precision Manufacturing Technology, 2021, 57(3): 5-10. [7] 杜双言,张伟,瞿品祥,等. 角度误差下管路连接结构 装配及其对密封的影响[J]. 润滑与密封, 2023, 48(6): 119-123. DU Shuangyan, ZHANG Wei, QU Pinxiang, et al. Effect of angle tolerance on assembly and seal of pipeline joint[J]. Lubrication Engineering, 2023, 48(6): 119-123. [8] SERGENT A, BUI M H, FAVRELIERE H, et al. Identification of machining defects by small displacement torsor and form parameterization method[J]. Physics, 2011, 2011: 1-6. [9] 周思杭,刘振宇,谭建荣. 基于尺寸变动度的装配序列 偏差传递模型及质量评价方法[J]. 机械工程学报, 2011, 47(2): 1-8. ZHOU Sihang, LIU Zhenyu, TAN Jianrong. Deviation propagation model of assembly sequence and quality evaluation approach based on degree of dimensional variation[J]. Journal of Mechanical Engineering, 2011, 47(2): 1-8. [10] AMETA G, DAVIDSON J K, SHAH J J. Statistical tolerance analysis with T-maps for assemblies[J]. Procedia Cirp, 2018, 75: 220-225. [11] MUSTAPHA E, AMEGOUZ D, CHAHBOUNI M, et al. Geometric tolerancing using the Jacobean torsor[C]//2020 IEEE 6th International Conference on Optimization and Applications, New York: IEEE, 2020: 1-5. [12] 余海东,高畅,赵勇,等. 机械产品装配偏差分析方法 研究进展与展望[J]. 机械工程学报, 2023, 59(9): 212-229. YU Haidong, GAO Chang, ZHAO Yong, et al. Progress and prospect on assembly deviation propagation of mechanical products[J]. Journal of Mechanical Engineering, 2023, 59(9): 212-229. [13] 何博侠,张志胜,戴敏,等. 机械装配过程的偏差传递 建模理论[J]. 机械工程学报, 2008, 44(12): 62-68. HE Boxia, ZHANG Zhisheng, DAI Min, et al. Theory of modeling variation propagation of mechanical assembly process[J]. Journal of Mechanical Engineering, 2008, 44(12): 62-68. [14] 刘伟东,宁汝新,刘检华,等. 机械装配偏差源及其偏 差传递机理分析[J]. 机械工程学报, 2012, 48(1): 156-168. LIU Weidong , NING Ruxin , LIU Jianhua , et al. Mechanism analysis of deviation sourcing and propagation for mechanical assembly[J]. Journal of Mechanical Engineering, 2012, 48(1): 156-168. [15] 田兆青,来新民,林忠钦. 多工位薄板装配偏差流传递 的状态空间模型[J]. 机械工程学报, 2007, 43(2): 202-209. TIAN Zhaoqing, LAI Xinmin, LIN Zhongqin. State space model of variations stream propagation multi-station assembly process of sheet metal[J]. Journal of Mechanical Engineering, 2007, 43(2): 202-209. [16] 苗瑞,应杨箭,杨东,等. 基于线性状态空间模型的多 工位尺寸偏差流建模与分析[J]. 机械工程学报, 2010, 46(8): 175-180. MIAO Rui , YING Yangjian , YANG Dong , et al. Modeling and analysis of multi-station dimensional deviation stream based on linear state space model[J]. Journal of Mechanical Engineering, 2010, 46(8): 175-180. [17] 洪军,郭俊康,刘志刚,等. 基于状态空间模型的精密 机床装配精度预测与调整工艺[J]. 机械工程学报, 2013, 49(6): 114-121. HONG Jun, GUO Junkang, LIU Zhigang, et al. Assembly accuracy prediction and adjustment process modeling of precision machine tool based on state space model[J]. Journal of Mechanical Engineering, 2013, 49(6): 114-121. [18] 郑小云,余建波,刘海强,等. 混合式多阶段加工过程 的自适应加权偏差传递网络建模与分析[J]. 机械工程 学报, 2018, 54(13): 179-191. ZHENG Xiaoyun, YU Jianbo, LIU Haiqiang, et al. Modeling and analysis of adaptive weighted variance propagation network in hybrid multistage machining processes[J]. Journal of Mechanical Engineering, 2018, 54(13): 179-191. [19] 刘伟东,宁汝新,刘检华,等. 基于偏差有向图和 D-H 方法的产品装配精度预测技术[J]. 机械工程学报, 2012, 48(7): 125-140. LIU Weidong, NING Ruxin, LIU Jianhua, et al. Precision predicting based on directed deviation graph modeling and D-H methodology[J]. Journal of Mechanical Engineering, 2012, 48(7): 125-140. [20] 赵强强,洪军,郭俊康,等. 多环闭链机构偏差传递分 析及几何精度建模[J]. 机械工程学报, 2018, 54(21): 156-165. ZHAO Qiangqiang, HONG Jun, GUO Junkang, et al. Deviation propagation analysis and accuracy modeling for multi-closed-loop mechanism[J]. Journal of Mechanical Engineering, 2018, 54(21): 156-165. [21] CHEN Hua, JIN Sun, LI Zhimin, et al. A comprehensive study of three dimensional tolerance analysis methods[J]. Computer-Aided Design, 2014, 53: 1-13. [22] 余觉,赵勇,牛书峰,等. 直接线性化方法及其在液体 火箭发动机管路装配中的应用[J]. 上海交通大学学报, 2016, 50(6): 957-962. YU Jue, ZHAO Yong, NIU Shufeng, et al. Direct linearization method and its application in the assembly of pipelines of rocket engine[J]. Journal of Shanghai Jiaotong University, 2016, 50(6): 957-962. [23] 杜田. 航天动力管路装配偏差传递建模与分析[D]. 上 海:上海交通大学, 2020. DU Tian. Modeling and analysis of assembly deviation transmission for aerospace power pipeline[D]. Shanghai: Shanghai Jiao Tong University, 2020. [24] PARK F C. Computational aspects of the product-ofexponentials formula for robot kinematics[J]. IEEE Transactions on Automatic Control, 1994, 39(3): 643-647. [25] WU W D, RAO S S. Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis[J]. Reliability Engineering & System Safety, 2007, 92(1): 54-64. [26] 阎华,刘桂雄,郑时雄. 机器人位姿精度理论研究现状 及展望[J]. 机床与液压, 1999(5): 3-5, 2. YAN Hua, LIU Guixiong, ZHENG Shixiong. Current situation and prospect of the study on the theory of position and attitude accuracy in a robot[J]. Machine Tool & Hydraulics, 1999(5): 3-5, 2. [27] 杨丹. 火箭发动机氢氧泵装配偏差分析和控制[D]. 上 海:上海交通大学, 2021. YANG Dan. Analysis and control for assembly deviation of hydrogen and oxygen pumps pf rocket engine[D]. Shanghai: Shanghai Jiao Tong University, 2021. [28] 赵强强,郭俊康,洪军,等. 基于连杆机构旋转法则的 平面单环闭链机构装配误差不确定性分析[J]. 机械工 程学报, 2018, 54(11): 29-38. ZHAO Qiangqiang, GUO Junkang, HONG Jun, et al. Uncertainty analysis of assembly error of planar singleloop mechanisms based on the rotatability laws of linkages[J]. Journal of Mechanical Engineering, 2018, 54(11): 29-38. [29] LAWSON H B, MICHELSOHN M L. Spin geometry[D]. Princeton: Princeton University Press, 1990. [30] BROCKER T, DIECK T T. Representations of compact lie groups[D]. Dordrecht: Springer Science & Business Media, 2013. [31] VARADARAJAN V S. Lie groups, lie algebras, and their representations[D]. Englewood Cliffs : Prentice-Hall , 1974. [32] 许腾云. 基于指数积的六关节串联机器人标定算法和 实验研究[D]. 武汉:华中科技大学, 2016. XU Tengyun. Research on calibration algorithm and experimental verification of 6R serial robot based on product-of-exponential[D]. Wuhan: Huazhong University of Science & Technology, 2016. [33] 飞机液压管路系统设计、安装要求. GJB 3054—97[S]. 北京:北京中国航空综合技术研究所, 1997. Design and installation requirements for aircraft hydraulic piping systems. GJB 3054 — 97[S]. Beijing : China Aviation Integrated Technology Research Institute, 1997. [34] LUO Changqi, ZHU Shunpeng, KESHTEGAR B, et al. Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 423: 116863. [35] LUO Changqi, KESHTEGAR B, ZHU Shunpeng, et al. EMCS-SVR : Hybrid efficient and accurate enhanced simulation approach coupled with adaptive SVR for structural reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115499. [36] AZZINI I, MARA T, ROSATI R. Monte Carlo estimators of first-and total-orders Sobol' indices[J]. arXiv: 2020. [37] SONG Lukai, LI Xueqin, ZHU Shunpeng, et al. Cascade ensemble learning for multi-level reliability evaluation[J]. Aerospace Science and Technology, 2024, 148: 109101. |