[1] LINDEN S, ENKRICH C, WEGER M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700): 1351-1353. [2] FANG N, XI D, XU J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456. [3] CAPOLINO F , KHAJAVIKHAN M , ALÙ A. Metastructures: From physics to application[J]. Applied Physics Letters, 2022, 120(6): 060401. [4] 康瑞,李雪,孟晗,等. 轻巧-承力-功能一体化超结构: 概念、设计及应用[J]. 应用数学和力学, 2024, 45(8): 949-973. KANG Rui, LI Xue, MENG Han, et al. Ultralight, compact, and load-bearing multifunctional metastructures: Concept, design and applications[J]. Applied Mathematics and Mechanics, 2024, 45(8): 949-973. [5] AN Q, LI D, LIAO W, et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures[J]. Advanced Materials, 2023, 35(26): 2300659. [6] 张潇雨,刘畅,施丽铭,等. 蒙皮点阵一体化支撑结构 的移动可变形组件优化设计及空间站应用[J]. 固体力 学学报, 2022, 43(5): 551-563. ZHANG Xiaoyu, LIU Chang, SHI Liming, et al. Optimal design of shell-lattice infill integrated supporting structure based on the method of moving morphable components and its applications in China space station[J]. Chinese Journal of Solid Mechanics, 2022, 43(5): 551-563. [7] 段晟昱,王潘丁,刘畅,等. 增材制造三维点阵结构设 计、优化与性能表征方法研究进展[J]. 航空制造技术, 2022, 65(14): 36-48, 57. DUAN Shengyi, WANG Panding, LIU Chang, et al. Research progress on design , optimization and performance characterization of additive manufactured 3D lattice structures[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 36-48, 57. [8] 刘付成,朱东方,李爽,等. 超大尺度柔性航天器动力 学建模与高精度形-姿协同控制研究进展[J]. 中国科 学:物理学 力学 天文学, 2025, 55(2): 6-22. LIU Fucheng, ZHU Dongfang, LI Shuang, et al. Research progress on dynamics modeling and high-precision form-attitude cooperative control of ultra-large-scale flexible spacecraft[J]. Sci. Sin.-Phys. Mech. Astron., 2025, 55(2): 6-22. [9] ZUO Z, D C W, HUANG Y, et al. Propelling the widespread adoption of large-scale 3D printing[J]. Nature Reviews Materials, 2024, 9(11): 754-756. [10] LI W, LIU J, ZHAO D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 1-17. [11] PENG L, PENG H, LI W, et al. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials[J]. Nature Protocols, 2023, 18(4): 1155-1178. [12] ZOU S, WANG Y, LI D, et al. Facile and scalable fabrication of stretchable flame-resistant yarn for temperature monitoring and strain sensing[J]. Chemical Engineering Journal, 2022, 450: 138465. [13] BAI L, LIU Y K, XU L, et al. A smart metasurface for electromagnetic manipulation based on speech recognition[J]. Engineering, 2023, 22: 185-190. [14] WANG Y, WU K, ZHANG X, et al. Superior fracture resistance and topology-induced intrinsic toughening mechanism in 3D shell-based lattice metamaterials[J]. Science Advances, 2024, 10(35): eadq2664. [15] LEANZA S, WU S, SUN X, et al. Active materials for functional origami[J]. Advanced Materials, 2024, 36(9): 2302066. [16] LIANG H , ZHANG Y , HE E , et al. “Cloth-to-Clothes-Like” fabrication of soft actuators[J]. Advanced Materials, 2024, 36(12): 2400286. [17] ZHANG Q, LI J, LI L, et al. Zeolite-based materials for greenhouse gas capture and conversion[J]. Science China Chemistry, 2024, 67(5): 1-14. [18] HU S , YANG S , LIU Z , et al. Broadband and polarization-insensitive absorption based on a set of multisized Fabry–Perot-like resonators[J]. The Journal of Physical Chemistry C, 2019, 123(22): 13856-13862. [19] WU S, EICHENBERGER J, DAI J, et al. Magnetically actuated reconfigurable metamaterials as conformal electromagnetic filters[J]. Advanced Intelligent Systems, 2022, 4(9): 2200106. [20] NASA Glenn Research Center. Glenn history[EB/OL]. [2025-03-23]. https://www.nasa.gov/glenn/history/. [21] ETICHA A T, AMDE M, BOGALE Y, et al. The effect of context-based close packing supported with the 3D-virtual model of crystals structure on students’ achievement and attitude[J]. Chemistry Teacher International, 2023, 5(3): 311-323. [22] 广州雷佳. DIMETAL-100 Pro 金属 3D 打印机[EB/OL]. [2025-03-23]. https://www.laseradd.com/dimetal-100pro/. Guangzhou Lei Jia. DIMETAL-100 Pro Metal 3D printer [EB/OL]. [2025-03-23]. https://www.laseradd.com/dimetal-100pro/. [23] BUCKLAND J. Outside-in[J]. Nature Reviews Immunology, 2002, 2(1): 6. [24] HYUN G, CAO S, HAM Y, et al. Three-dimensional, submicron porous electrode with a density gradient to enhance charge carrier transport[J]. ACS Nano, 2022, 16(6): 9762-9771. [25] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D Printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. [26] GREGG C E, CATANOSO D, FORMOSO O I B, et al. Ultralight, strong, and self-reprogrammable mechanical metamaterials[J]. Science Robotics , 2024 , 9(86) : eadi2746. [27] 李秉洋,耿新宇,段慧玲,等. 一种形状记忆合金组件 及 旋 转 驱 动 器 : 中 国 专 利 , 202311434710.0[P]. 2024-11-07. LI Bingyang, GENG Xinyu, DUAN Huiling, et al. A shape memory alloy assembly and rotary actuator : Chinese patent, 20231434710.0[P]. 2024-11-07. [28] 王向明,苏亚东,吴斌,等. 微桁架点阵结构在飞机结 构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10): 16-25. WANG Xiangming , SU Yadong , WU Bin , et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 16-25. [29] ZHU N, XU Y, WANG X, et al. Plastically isotropic mechanical metamaterials with discrete assemblies[J]. Advanced Functional Materials, 2025: 2424390. [30] CAMERON C G, FREDIN Z, GERSHENFELD N. Discrete assembly of unmanned aerial systems[C]// Intemational Conference on Unmanned Aircraft Systems (ICUAS), 2022: 339-44. [31] WANG X, HAN J, XU H, et al. Nonlinear mechanical behaviour and visco-hyperelastic constitutive description of isotropic-genesis, polydomain liquid crystal elastomers at high strain rates[J]. Journal of the Mechanics and Physics of Solids, 2024, 193: 105882. [32] KADIC M, BÜCKMANN T, STENGER N, et al. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters, 2012, 100(19): 191901. [33] XU X, LI C, HUANG C, et al. Cushioning performance design of meta-sandwich structures inspired by Kirigami[J]. Virtual and Physical Prototyping, 2023, 18(1): e2285894. [34] 王昕,李振,季海波,等. 高强韧仿生螺旋复合材料超 结构设计与分析[J]. 应用数学和力学, 2024, 45(8): 1106-1116. WANG Xi, LI Zhen, JI Haibo, et al. Design and analysis of high strength and toughness bio-inspired helicoidal composite metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1106-1116. [35] AN B H, LEE J W. Metamaterial-based muffler with broadband tunability in a limited space: Optimal design, theoretical investigation and experiment[J]. International Journal of Mechanical Sciences, 2021, 205: 106594. [36] 张振华,牛闯,钱海峰,等. 六层金字塔点阵夹芯板结 构在水下近距爆炸载荷下的冲击实验[J]. 中国舰船研 究, 2016, 11(4): 51-58, 66. ZHANG Zhenhua, NIU Chuang, QIAN Haifeng, et al. Impact experiment of six-layer pyramidal lattices sandwich panels subjected to near field underwater explosion[J]. Chinese Journal of Ship Research, 2016, 11(4): 51-58, 66. [37] HOYT R, CUSHING J, SLOSTAD J. SpiderFab: Process for on-orbit construction of kilometer-scale apertures[R]. Washington DC: NASA, 2013. [38] CRAMER N B, CELLUCCI D W, FORMOSO O B, et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials and Structures, 2019, 28(5): 055006. [39] 李厚何. 宏大而壮美重型运载火箭的现在与未来(下)[J]. 坦克装甲车辆, 2024(18): 46-53. LI Houhe. The present and future of mighty heavy-lift launch vehicles (Part 2)[J]. Tank & Armored Vehicle, 2024(18): 46-53. [40] LIU J Z , JIANG W , ZHUO S , et al. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation[J]. Science Advances, 2025, 11(1): eadr2158. [41] PENG X, KUANG X, ROACH D J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing, 2021, 40: 101911. [42] PARK J S, LIM S W D, AMIRZHAN A, et al. All-glass 100 mm diameter visible metalens for imaging the cosmos[J]. ACS Nano, 2024, 18(4): 3187-3198. [43] ZHANG J, WEI X, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2019, 7(1): 265-271. [44] SCHURIG D , MOCK J J , JUSTICE B J , et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. [45] 崔铁军,张磊,吴瑞元. 信息超材料[M]. 北京:龙门 书局, 2024. CUI Tiejun, ZHANG Lei, WU Ruiyuan. Information metamaterials[M]. Beijing: Long Men Shu Ju, 2024. [46] ZENG H , GAO Q , GAO S , et al. Nonlocal acoustic-mechanical metasurface for simultaneous and enhanced sound absorption and vibration reduction[J]. Materials & Design, 2024, 244: 113120. [47] CAO M, YAN H, XIAO P, et al. Multifunctional design of an X-lattice interlocked sandwich structure with integrated electromagnetic wave regulation, convective heat transfer and load bearing performances[J]. Composite Structures, 2024, 345: 118401. |