HUANG Huan, LI Haitao, ZHU Hanlin, CHENG Yanxing, DENG Zigang, ZHENG Jun. Semi-analytical Electromagnetic Model and Stiffness Characteristics of Superconducting Electrodynamic Suspension Based on the Fourier Series Method[J]. Journal of Mechanical Engineering, 2025, 61(14): 261-272.
[1] POWELL J,DANBY G. A 300 mph magnetically suspended train[J]. Mechanical Engineering,1967,89:30-35. [2] POWELL J,DANBY G. High-speed transport by magnetically suspended trains[C/CD]// American Soc. of Mech. Eng. Winter Annual Meeting,America,New York,1966. [3] HAN H,KIM D. Magnetic levitation[M]. Dordrecht:Springer,2016. [4] LIM J,LEE C,LEE J,et al. Design model of null-flux coil electrodynamic suspension for the hyperloop[J]. Energies,2020,13(19):5075. [5] 马光同,杨文姣,王志涛,等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版),2019,47(7):68-74. MA Guangtong,YANG Wenjiao,WANG Zhitao,et al. Research development of superconducting Maglev transportation[J]. Journal of South China University of Technology(Natural Science Edition),2019,47(7):68-74. [6] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3):455-474,530. DENG Zigang,LIU Zongxin,LI Haitao,et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University,2022,57(3):455-474,530. [7] 李家志,索红莉,王毅,等. 超导材料在磁悬浮列车上的应用进展(上)[J]. 铁道技术监督,2020,48(3):38-44. LI Jiazhi,SUO Hongli,WANG Yi,et al. Progress in the application of superconducting materials on maglev trains (Part 1 of 2)[J]. Railway Quality Control,2020,48(3):38-44. [8] 李家志,索红莉,王毅,等. 超导材料在磁悬浮列车上的应用进展(下)[J]. 铁道技术监督,2020,48(4):51-57. LI Jiazhi,SUO Hongli,WANG Yi,et al. Progress in the application of superconducting materials on maglev trains (Part 2 of 2)[J]. Railway Quality Control,2020,48(4):51-57. [9] HE J L,ROTE D M,COFFEY H T. Applications of the dynamic circuit theory to maglev suspension systems[J]. IEEE Transactions on Magnetics,1993,29(6):4153-4163. [10] 龚夕霞,卢琴芬. 超导电动悬浮系统基于有限元-解析耦合算法的力特性分析[J]. 微电机,2020,53(9):1-7. GONG Xixia,LU Qinfen. Force performance analysis of superconducting EDS system by finite element-analytical coupling algorithm[J]. Micromotors,2020,53(9):1-7. [11] GONG T,MA G,WANG R,et al. 3-D FEM modeling of the superconducting EDS train with cross-connected figure-eight-shaped suspension coils[J]. IEEE Transactions on Applied Superconductivity,2021,31(3):3600213. [12] LÜ G,ZHANG Z,LIU Y,et al. Analysis of forces in linear synchronous motor with propulsion,levitation and guidance for high-speed maglev[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2022,10(3):2903-2911. [13] AZUKIZAWA T. Persistent current analysis of superconducting coils in an electrodynamic suspension system[J]. Electrical Engineering in Japan,1995,115(2):432-437. [14] SU Z,LUO J,MA G,et al. Fast and precise calculation of mutual inductance for electrodynamic suspension:Methodology and validation[J]. IEEE Transactions on Industrial Electronics,2022,69(6):6046-6057. [15] NONAKA S,HIROSAKI T,KAWAKAMI E. Analysis of characteristics of repulsive magnetic levitated train using a space harmonic technique[J]. Electrical Engineering in Japan,1980,100(10):601-608. [16] LÜ G,ZHANG Z,LIU Y,et al. Characteristics analysis of linear synchronous motor integrated with propulsion,levitation and guidance in high-speed maglev system[J]. IEEE Transactions on Transportation Electrification,2021,7(4):3185-3193. [17] FUJIWARA S. Characteristics of EDS magnetic levitation with ground coils for levitation arranged on the side wall[J]. Electrical engineering in Japan,1988,108(3):101-110. [18] ANDRIOLLO M,MARTINELLI G,MORINI A,et al. 3D analysis of forces in the shields of SC coils in EDS-MAGLEV transport systems[J]. Elsevier Studies in Applied Electromagnetics in Materials,1995(6):371-374. [19] 徐杰. 超导磁悬浮列车用直线发电机的设计与特性解析分析[D]. 北京:北京交通大学,2020. XU Jie. Design and characteristic analysis of linear generator for superconducting Maglev train[D]. Beijing:Beijing Jiaotong University,2020. [20] YAMADA T,IWAMOTO M,ITO T. Magnetic damping force in inductive magnetic levitation system for high-speed trains[J]. Electrical Engineering in Japan,1974,94(1):80-84. [21] LIM J,LEE C,OH Y J,et al. Equivalent inductance model for the design analysis of electrodynamic suspension coils for the Hyperloop[J]. Scientific reports,2021,11:23499. [22] YONEZU T,HOSHINO H,SUZUKI E,et al. Development of models for co-simulation of mechanics and electromagnetics for dynamic analysis of superconducting Maglev vehicles moving with large displacements[J]. RTRI Report,2012,26(5):5-10. [23] 张伟海. 超导电动悬浮车辆横向悬挂减振策略研究[D]. 成都:西南交通大学,2021. ZHANG Weihai. Study on the vibration reduction startegies of lateral suspension in superconducting electrodynamic suspension vehicle[D]. Chengdu:Southwest Jiaotong University,2021. [24] WANG X,HUANG J. Research on electromagnetic relationship and passive electromagnetic damping characteristics of superconducting electrodynamic Maglev train[J]. IEEE Transactions on Applied Superconductivity,2022,32(7):3602818. [25] 张娟,赵春发,冯洋,等. 超导磁浮列车电动悬浮导向力学特性研究[J]. 机械,2020,47(9):25-32. ZHANG Juan,ZHAO Chunfa,FENG Yang,et al. Study on mechanical characteristics of the electrodynamic levitation and guidance system for the superconducting maglev train[J]. Machinery,2020,47(9):25-32. [26] ZHANG Z,LIU Y,ZHOU T,et al. Analysis of electromechanical characteristics in air-core integrated linear synchronous motor for EDS maglev train with pitching operation condition[J]. IEEE Transactions on Vehicular Technology,2022,71(7):6938-6947. [27] LV G,LIU Y,ZHANG Z,et al. Numerical analysis of the rotational magnetic springs for EDS maglev train[J]. CES Transactions on Electrical Machines and Systems,2022,6(1):60-66. [28] LÜ G,ZHANG Z,LI X. Three-dimensional electromagnetic characteristics analysis of novel linear synchronous motor under lateral and yaw conditions of maglev[J]. CES Transactions on Electrical Machines and Systems,2022,6(1):29-36. [29] 马光同,龚天勇,王瑞晨. 一种阶梯形超导磁体及具有其的电动悬浮系统:中国,CN201910025899.5[P]. 2020-07-17. MA Guangtong,GONG Tianyong,WANG Ruichen. A stepped superconducting magnet and the electric levitation system:China,CN201910025899.5[P]. 2020-07-17. [30] SAITOH T,MAKI N,KOBAYASHI T,et al. Electromagnetic force and eddy current loss in dynamic behavior of a superconducting magnetically levitated vehicle[J]. IEEE Transactions on Applied Superconductivity,1993,3(1):417-420. [31] MIZUNO K,SUGINO M,TANAKA M,et al. Experimental production of a real-scale REBCO magnet aimed at its application to Maglev[J]. IEEE Transactions on Applied Superconductivity,2017,27(4):3600205. [32] HUANG H,ZHU H,COOMBS T,et al. FE Modeling of superconducting EDS system employing mixed formulations and field-circuit coupling method[J]. IEEE Transactions on Transportation Electrification,2023,9(1):1618-1628. [33] FUJIMOTO T,AIBA M,SUZUKI H,et al. Characteristics of electromagnetic force of ground coil for levitation and guidance at the Yamanashi Maglev test line[J]. Quarterly reports of the Railway Technical Research Institute,2000,41(2):63-67. [34] OHASHI S,OHSAKI H,MASADA E. Equivalent model of the side wall electrodynamic suspension system[J]. IEEJ Transactions on Industry Applications,1993,117(6):758-767. [35] YONEZU T,WATANABE K,SUZUKI E. Characteristics of magnetic springs for guidance of superconducting maglev vehicles characteristics of magnetic springs for guidance[J]. QR of RTRI,2018,59(4):293-298.