HU Jia, LIU Jianhua, LIU Shaoli, LIU Jinshan, WANG Jiaxiu, SUN Liansheng. Pose Estimation Method for Spacecraft Pipe Based on Adaptive Convolution and Latent Representation[J]. Journal of Mechanical Engineering, 2025, 61(14): 150-165.
[1] LIU Qiang,WANG Chengen. Pipe-assembly approach for aero-engines by modified particle swarm optimization[J]. Assembly Automation,2010,30(4):365-377. [2] ZHANG Z,SAADAT M. Multi-objective grasp pose optimisation for robotic 3D pipe assembly manipulation[J]. Robotics and Computer-Integrated Manufacturing,2022,76:102326. [3] HU Jia,LIU Jianhua,LIU Shaoli,et al. Pipe pose estimation based on machine vision[J]. Measurement,2021,182:109585. [4] 原晓佩,陈小锋,廉明. 基于Haar-like和LBP的多特征融合目标检测算法[J]. 计算机科学,2021,48(11):219-225. YUAN Xiaopei,CHEN Xiaofeng,LIAN Ming. Improved multi-feature fusion algorithm for target detection based on Haar-like and LBP[J]. Computer Science,2021,48(11):219-225. [5] 宋敏敏,周泽亚,邱燕,等. 基于HOG特征SVM分类器的红外图像智能检测与分类方法[J]. 红外,2022,43(4):25-32. SONG Minmin,ZHOU Zeyan,QIU Yan,et al. Intelligent detection and classification method of infrared image based on HOG feature and SVM classifier[J]. Infrared,2022,43(4):25-32. [6] 陈泽瑜,李向国,曹登锋,等. 面向无序抓取的DPC聚类多目标检测方法研究[J]. 计算机工程与应用,2023,59(23):175-182. CHEN Zeyu,LI Xiangguo,CAO Dengfeng,et al. Reaserch on DPC clustering multi-objective detection method for disorderly grasping[J]. Computer Engineering and Applications,2023,59(23):175-182. [7] 郑联语,付强,樊伟,等. 基于双目视觉和先验加工数据的大型筒件原位位姿感知方法[J]. 机械工程学报,2023,59(11):129-146. ZHENG Lianyu,FU Qiang,FAN Wei,et al. In-situ pose measurement method for large cylinders based on binocular vision and prior processing data[J]. Journal of Mechanical Engineering,2023,59(11):129-146. [8] 张亚炜,付东翔. 基于双向融合纹理和深度信息的目标位姿检测[J]. 数据采集与处理,2024,39(5):1214-1227. ZHANG Yawei,FU Dongxiang. Target position detection based on bidirectional fusion of texture and depth information[J]. Journal of Data Acquisition and Processing,2024,39(5):1214-1227. [9] GAIDON A,WANG Q,CABON Y,et al. Virtual worlds as proxy for multi-object tracking analysis[C]// IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas:CVPR,2016:4340-4349. [10] HU Y T,CHEN H S,HUI K,et al. SAIL-VOS:Semantic amodal instance level video object segmentation-a synthetic dataset and baselines[C]// IEEE Conference on Computer Vision and Pattern Recognition,Long Beach:CVPR,2019:3105-3115. [11] FABBRI M,LANZI F,CALDERARA S,et al. Learning to detect and track visible and occluded body joints in a virtual world[C]// European Conference on Computer Vision,Munich:ECCV,2018:430-446. [12] TREMBLAY J,PRAKASH A,ACUNA D,et al. Training deep networks with synthetic data:bridging the reality gap by domain randomization[C]// IEEE International Conference on Computer Vision Pattern Recognition,Salt Lake City:CVPR,2018:969-977. [13] 郑义桀,罗健欣,陈卫卫,等. 基于Unity3D三维多视角虚拟数据集构建[J]. 计算机技术与发展,2023,33(5):173-179. ZHENG Yijie,LUO Jianxin,CHEN Weiwei,et al. 3D multi-view virtual dataset construction based on Unity3D[J]. Computer Technology and Development,2023,33(5):173-179. [14] ABOUELYAZID M. Reinforcement learning-based approaches for improving safety and trust in robot-to-robot and human-robot interaction[J]. Advances in Urban Resilience and Sustainable City Design,2024,16(2):18-29. [15] 郎宁,王德成,程鹏. 基于集成自适应欠采样的铝管表面缺陷检测方法研究[J]. 机械工程学报,2023,59(6):18-31. LANG Ning,WANG Decheng,CHENG Peng. Research on surface defect detection method of aluminum tube based on ensemble adaptive undersampling[J]. Journal of Mechanical Engineering,2023,59(6):18-31. [16] DANG L M,WANG H,LI Y,et al. Lightweight pixel-level semantic segmentation and analysis for sewer defects using deep learning[J]. Construction and Building Materials,2023,371:130792. [17] LI Y,WANG H,DANG L M,et al. A robust instance segmentation framework for underground sewer defect detection[J]. Measurement,2022,190:110727. [18] 唐若仪,陈成军,王金磊,等. 基于TD-Mask R-CNN的机械装配体图像实例分割[J]. 组合机床与自动化加工技术,2024(4):135-140. TANG Ruoyi,CHEN Chengjun,WANG Jinlei,et al. Instance segmentation of mechanical assembly image based on TD-Mask R-CNN[J]. Modular Machine Tool & Automatic Manufacturing Technique,2024(4):135-140. [19] JIANG Yang,CHANG Jiaming,ZHAO Bin. Improved cascade rcnn model-based research on multi-object grasping technique for robotic arms[C]// International Symposium on Robotics & Intelligent Manufacturing Technology,Changzhou:ISRIMT,2024:139-143. [20] 徐胜军,李康平,韩九强,等. 基于多尺度特征注意Yolact网络的堆叠工件分拣算法[J]. 计算机测量与控制,2022,30(9):184-192,200. XU Shengjun,LI Kangping,HAN Jiuqiang,et al. Stacking workpieces sorting algorithm based on multi-scale feature attention yolact network[J]. Computer Measurement & Control,2022,30(9):184-192,200. [21] MO Lidong,QI Naiming,ZHAO Zhengqing. Spacecraft pose estimation based on different camera model[J]. Chinese Journal of Mechanical Engineering,2023,36:63. [22] OBERWEGER M,RAD M,LEPETIT V. Making deep heatmaps robust to partial occlusions for 3d object pose estimation[C]// European Conference on Computer Vision,Munich:ECCV,2018:125-141. [23] PENG Sida,ZHOU Xiaowei,LIU Yuan,et al. PVNet:Pixel-wise voting network for 6DoF object pose estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(6):3212-3223. [24] KENDALL A,GRIMES M,CIPOLLA R. PoseNet:a convolutional network for real-time 6-DOF camera relocalization[C]// IEEE International Conference on Computer Vision,Santiago:ICCV,2015:2938-2946. [25] WALCH F,HAZIRBAS C,LEAL-TAIXE L,et al. Image-based localization using LSTMs for structured feature correlation[C]// IEEE International Conference on Computer Vision,Venice:ICCV,2017:627-637. [26] MELEKHOV I,YLIOINAS J,KANNALA J,et al. Image-based localization using hourglass networks[C]// IEEE International Conference on Computer Vision,Venice:ICCV,2017:870-877. [27] HUNG W C,JAMPANI V,LIU S,et al. SCOPS:Self-supervised co-part segmentation[C]// IEEE Conference on Computer Vision Pattern Recognition,Long Beach:CVPR,2019:869-878. [28] DENG X,XIANG Y,MOUSAVIAN A,et al. Self-supervised 6d object pose estimation for robot manipulation[C]// IEEE International Conference on Robotics and Automation,Paris:ICRA,2020:3665-3671. [29] 刘志赟,肖伟毅,任若飞. 基于Cook-Torrance光照模型改进BRDF计算方式的研究实现[J]. 电脑知识与技术,2024,20(17):123-130. LIU Zhiyun,XIAO Weiyi,REN Ruofei. Research implementation of improved BRDF calculation based on Cook-Torrance light model[J]. Computer Knowledge and Technology,2024,20(17):123-130. [30] LINNERT D,STAVRIDIS M,NEUSCHAEFER R U,et al. Physically based rendering method to derive realistic simulation of chromatic confocal measurements[J]. Modeling Aspects in Optical Metrology IX,2023(12619):205-215. [31] HODAN T,HALUZA P,OBDRZALEK S,et al. T-LESS:An RGB-D dataset for 6D pose estimation of texture-less objects[C]// IEEE International Conference on Computer Vision and Pattern Recognition,Honolulu:CVPR,2017:880-888. [32] PARK S Y,SON C M,JEONG W,et al. Relative pose estimation between image object and ShapeNet CAD model for automatic 4-dof annotation[J]. Applied Sciences,2023(13):693. [33] LIN T,DOLLAR P,GIRSHICK R B,et al. Feature pyramid networks for object detection[C]// IEEE International Conference on Computer Vision and Pattern Recognition,Las Vegas:CVPR,2016:936-944. [34] HE K,GKIOXARI G,DOLLAR P,et al. Mask r-cnn[C]// IEEE International Conference on Computer Vision,Venice:ICCV,2017:2980-2988. [35] CAI Z,VASCONCELOS N. Cascade R-CNN:High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(5):1483-1498. [36] VU T,KANG H,YOO C D. SCNet:Training inference sample consistency for instance segmentation[C]// AAAI Conference on Artificial Intelligence,Vancouver:AAAI,202135(3):2701-2709. [37] WANG Xinlong,KONG Tao,SHEN Chunhua,et al. SOLO:segmenting objects by locations[C]// European Conference on Computer Vision,Glasgow:ECCV,2020:649-665. [38] MAO A,MOHRI M,ZHONG Y. Cross-entropy loss functions:Theoretical analysis and applications[C]// International Conference on Machine Learning,Hawaii Convention Center:ICML,2023:23803-23828. [39] MILLETARI F,NAVAB N,AHMADI S A. V-Net:Fully convolutional neural networks for volumetric medical image segmentation[C]// IEEE International Conference on Computer Vision and Pattern Recognition,Las Vegas:CVPR,2016:565-571. [40] WOLD S,ESBENSEN K,GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems,1987(2):37-52. [41] CHEN C,ZHANG C,WANG J,et al. Semantic segmentation of mechanical assembly using selective kernel convolution UNet with fully connected conditional random field[J]. Measurement,2023,209:112499. [42] YI Qin,XI Dejun,CHEN Weiwei,et al. Gear Pitting Measurement by Multi-Scale Splicing Attention U-Net[J]. Chinese Journal of Mechanical Engineering,2023,36:50. [43] MING Q,XIAO X. Towards accurate medical image segmentation with gradient-optimized dice loss[J]. IEEE Signal Processing Letters,2024(31):191-195.