Study on the Effect of Ultra-low Temperature Compression on the Microstructure of 6061 Aluminum Alloy and Its Deformation Mechanism
FU Yunfan1,2, YI Youping1,2, HUANG Shiquan1,2, HE Hailin1,2, DONG Fei1,2
1. Research Institute of Light Alloy, Central South University, Changsha 410083; 2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083
FU Yunfan, YI Youping, HUANG Shiquan, HE Hailin, DONG Fei. Study on the Effect of Ultra-low Temperature Compression on the Microstructure of 6061 Aluminum Alloy and Its Deformation Mechanism[J]. Journal of Mechanical Engineering, 2025, 61(14): 56-62.
[1] GARAIHY E H W,AIATEYAH I A,SHABAN M,et al. A comparative study of a machine learning approach and response surface methodology for optimizing the hpt processing parameters of aa6061/sicp composites[J]. Journal of Manufacturing and Materials Processing,2023,7(4):148. [2] VANDERLEI L T,WEISHAUPT T C P,JOSÉ E Z. Rheological behavior in the semisolid state of al-si-cu alloys produced by ecap[J]. Solid State Phenomena,2023,347:135-140. [3] CHENG J Y,RADHAKRISHNAN M,MILLER C,et al. The influence of thermomechanical treatment pathways on texture and mechanical properties in ARB Cu/Nb nanolaminates[J]. Materials Science & Engineering A,2023,886:145610. [4] KATIYAR L K,ANSARI M F,SASIKUMAR C. Stress-induced modifications on microstructure and mechanical properties of dual-phase steel sheets by repetitive corrugation and straightening[J]. Sādhanā,2022,47(3):119-143. [5] AZIZI N,MAHMUDI R. Superplasticity of fine-grained Mg-x Gd alloys processed by multi-directional forging[J]. Materials Science & Engineering A,2019,767:138436-138436. [6] WANG B,WANG X,LI J. Formation and microstructure of ultrafine-grained titanium processed by multi-directional forging[J]. Journal of Materials Engineering and Performance,2016,25(6):2521-2527. [7] 刘伟,程旺军,郝永刚,等. 铝合金超低温双增效应与成形性能[J]. 中国有色金属学报,2022,32(7):1845-1854. LIU Wei,CHENG Wangjun,HAO Yonggang,et al. Dual enhancement effect and formability of aluminum alloysat cryogenic temperatures[J]. The Chinese Journal of Nonferrous Metals,2022,32(7):1845-1854. [8] 曾萍. 超低温时效处理对Al-Si-Mg合金组织与性能的影响[J]. 铸造,2016,65(10):963-965,969. ZENG Ping. The effect of ultra low temperature aging treatment on themicrostructure and properties of al-si-mgalloy[J]. Foundry,2016,65(10):963-965,969. [9] 熊震,刘晓波,陈鹏. 高温塑性变形条件下7050铝合金微观组织的演化[J]. 轻合金加工技术,2018,46(11):67-73. XIONG Zhen,LIU Xiaobo,CHEN Peng. Microstructure evolution for plastic deformation of 7050 aluminum alloy at high temperature[J]. Light Alloy Fabrication Technology,2018,46(11):67-73. [10] LIU Q,HANSEN N. Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation[J]. Scripta Metallurgica et Materialia,1995,32(8):1289-1295. [11] 侯陇刚,刘明荔,王新东,等. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报,2017,53(9):1075-1090. HOU Longgang,LIU Mingli,WANG Xindong,et al. Ultra-low temperature large deformation processing and microstructure and property regulation of high-strength 7050 aluminum alloy[J]. Acta Metallurgica Sinica,2017,53(9):1075-1090. [12] ASADI S,KAZEMINEZHAD M. Multi directional forging of 2024 al alloy after different heat treatments: microstructural and mechanical behavior[J]. Transactions of the Indian Institute of Metals,2017,70(7):1707-1719. [13] 李鹏伟,李翌瑞,蔡安辉,等. 铝合金锻造开坯变形均匀性数值模拟与试验验证[J]. 锻压技术,2022,47(8):1-6,28. LI Pengwei,LI Yirui,CAI Anhui,et al. Numerical simulation and experimental verification of deformation uniformity in aluminum alloy forging cogging[J]. Forging & Stamping Technology,2022,47(8):1-6,28. [14] 刘瑛,张新明,李慧中,等. 2519铝合金的低温拉伸力学性能[J].中南大学学报(自然科学版),2006(4):641-645. LIU Ying,ZHANG Xinming,LI Huizhong,et al. Tensile properties of 2519 aluminum at low temperature[J]. Journal of Central South University,2006(4):641-645. [15] 罗志勇,李亨,王振,等. 室温及液氮控温对轧制态Al-Sc合金力学性能及织构的影响[J]. 金属热处理,2020,45(2):19-22. LUO Zhiyong,LI Heng,WANG Zhen,et al. Effect of room temperature and liquid nitrogen temperature control onmechanical properties and texture of rolled Al-Sc alloy[J]. Heat Treatment of Metals,2020,45(2):19-22. [16] JOSHI A,KUMAR N,YOGESHA K K,et al. Mechanical properties and microstructural evolution in al 2014 alloy processed through multidirectional cryoforging[J]. Journal of Materials Engineering and Performance,2016,25(7):3031-3045. [17] ZANDBERGEN W H,ANDERSEN J S,JANSEN J. Structure determination of Mg5 Si6 particles in al by dynamic electron diffraction studies[J]. Science,1997,277(5330):1221-1225. [18] ZEID A F E. Mechanical and electrochemical characteristics of solutionized AA 6061,AA6013 and AA 5086 aluminum alloys[J]. Journal of Materials Research and Technology,2019,8(2):1870-1877. [19] HONGMEI J,DI T,RENGUO G. Precipitation behavior during re-aging of Al-Mg-Si-Cu alloy[J]. Materials Design,2022,220(8):110883. [20] ZHANG Jingjing,YI Youping,HUANG Shiquan,et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Materials Science & Engineering A,2021,804(2):140-650. [21] KUMAR N,RAO N P,JAYAGANTHAN R,et al. Effect of cryorolling and annealing on recovery, recrystallisation, grain growth and their influence on mechanical and corrosion behaviour of 6082 Al alloy[J]. Materials Chemistry and Physics,2015,165(10):177-187. [22] NIKHIL K. An exploration of microstructural in-homogeneity in the 6082 Al alloy processed through room temperature multi-axial forging[J]. Materials Characterization,2021,176(6): 111-134. [23] DONG Fei,HUANG Shiquan,YI Youping, et al. Flow behaviors and deformation mechanism of WQ-tempered Al-Li alloy at cryogenic temperatures[J]. Materials Science Engineering A,2021,809(3):140-171. [24] WANG Lin,XIAO Yue,KONG Charlie,et al. Mechanical properties and microstructure evolution of an Al-Cu-Li alloy via cross cryorolling[J]. International Journal of Lightweight Materials and Manufacture,2022,5:431-439.