Task Production Progress Prediction Approach in Distributed Cooperative Manufacturing Based on Cloud-edge Collaboration
ZHU Haihua1, WANG Jianjie1, LI Fei2, LIU Changchun1, CAI Qixiang1, TANG Dunbing1
1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016; 2. Beijing Institute of Electronic System Engineering, Beijing 100854
ZHU Haihua, WANG Jianjie, LI Fei, LIU Changchun, CAI Qixiang, TANG Dunbing. Task Production Progress Prediction Approach in Distributed Cooperative Manufacturing Based on Cloud-edge Collaboration[J]. Journal of Mechanical Engineering, 2025, 61(13): 265-281.
[1] 谢志强,夏迎春. 基于遗传算法和分枝定界的多车间空闲产能调度方法[J]. 机械工程学报,2022,58(22):462-472. XIE Zhiqiang,XIA Yingchun. Multi-shop idle capacity scheduling method based on genetic algorithm and branch and bound[J]. Journal of Mechanical Engineering,2022,58(22):462-472. [2] 方伟光,郭宇,黄少华,等. 大数据驱动的离散制造车间生产过程智能管控方法研究[J]. 机械工程学报,2021,57(20):277-291. FANG Weiguang,GUO Yu,HUANG Shaohua,et al. Big data driven intelligent production control of discrete manufacturing process[J]. Journal of Mechanical Engineering,2021,57(20):277-291. [3] ZHAI Y,CHENG T C E. Lead-time quotation and hedging coordination in make-to-order supply chain[J]. European Journal of Operational Research,2022,300(2):449-460. [4] ZHU H,WANG J,LIU C,et al. An MBD-driven order remaining completion time prediction method based on SSA-BiLSTM in the IoT-enabled manufacturing workshop[J]. International Journal of Production Research,2023,62(10):3559–3584. [5] 胡一凡,张利平,白雪,等. 深度强化学习求解柔性装配作业车间调度问题[J]. 华中科技大学学报,2023,51(2):153-160. HU Yifan,ZHANG Liping,BAI Xue,et al. Deep reinforcement learning for flexible assembly job shop scheduling problem[J]. Journal of Huazhong University of Science and Technology,2023,51(2):153-160. [6] LIU C,ZHU H,TANG D,et al. A transfer learning CNN-LSTM network-based production progress prediction approach in IIoT-enabled manufacturing[J]. International Journal of Production Research,2023,61(12):4045-4068. [7] 周海浪,郭宇,张浩,等. 基于加权集成学习的车间生产进度异常预测[J]. 组合机床与自动化加工技术,2023(8):188-192. ZHOU Hailang,GUO Yu,ZHANG Hao,et al. Anomaly prediction of workshop production progress based on weighted ensemble learning[J]. Modular Machine Tool & Automatic Manufacturing Technique,2023(8):188-192. [8] FANG W,GUO Y,LIAO W,et al. Big data driven jobs remaining time prediction in discrete manufacturing system: a deep learning-based approach[J]. International Journal of Production Research,2020,58(9):2751-2766. [9] 潘燕,方文,程睿远,等. 基于中小企业的工业互联网云平台的研究与实现[J]. 工业控制计算机,2021,34(12):1-3. PAN Yan,FANG Wen,CHENG Ruiyuan,et al. Research on industrial internet cloud platform based on SMEs[J]. Industrial Control Computer,2021,34(12):1-3. [10] NASKOS A,NIKOLAIDIS N,NASKOS V,et al. A micro-service-based machinery monitoring solution towards realizing the industry 4.0 vision in a real environment[J]. Procedia Computer Science,2021,184:565-572. [11] 汪松松,彭来湖,戴宁,等. 基于工业互联网的针织机械互联互通结构研究[J]. 纺织学报,2020,41(1):165-173. WANG Songsong,PENG Laihu,DAI Ning,et al. Research on knitting machine interconnection and interoperability structure based on industrial internet[J]. Journal of Textile Research,2020,41(1):165-173. [12] CHEN T,QIU Z,XU Z. Design of AGV fault diagnosis data acquisition system based on cloud platform[J]. Academic Journal of Engineering and Technology Science,2022,5(11):26-32. [13] WANG C,GUO R,YU H,et al. Task offloading in cloud-edge collaboration-based cyber physical machine tool[J]. Robotics and Computer-Integrated Manufacturing,2023,79:102439. [14] 王梦瑶,刘佳宜,杨清海,等. 基于云边协同的工厂生产线智能监测系统方案[J]. 自动化与仪器仪表,2022(8):106-109. WANG Mengyao,LIU Jiayi,YANG Qinghai,et al. Intelligent monitoring system of factory production line based on cloud-side collaboration[J]. Automation & Instrumentation,2022(8):106-109. [15] TANG X,XU L,CHEN G. Research on the rapid diagnostic method of rolling bearing fault based on cloud-edge collaboration[J]. Entropy,2022,24(9):1277. [16] HAN H,ZHOU G,ZHANG C,et al. A novel framework for online decision-making and feedback optimization of complex products process parameter based on edge-cloud collaboration[J]. Digital Twin,2022,2:13. [17] YANG H,ONG S K,NEE A Y C,et al. Microservices-based cloud-edge collaborative condition monitoring platform for smart manufacturing systems[J]. International Journal of Production Research,2022,60(24):7492-7501. [18] 郑忠斌,李世强,费海平. 一种基于Kubernetes的工业物联网新型调度[J]. 单片机与嵌入式系统应用,2021,21(6):15-19. ZHENG Zhongbin,LI Shiqiang,FEI Haiping. New scheduler for industrial internet of things based on kubernetes[J]. Microcontrollers & Embedded Systems,2021,21(6):15-19. [19] LEE S,PHAN L A,PARK D H,et al. EdgeX over Kubernetes:Enabling container orchestration in EdgeX[J]. Applied Sciences,2021,12(1):140. [20] CAMPOLO C,GENOVESE G,Singh G,et al. Scalable and interoperable edge-based federated learning in IoT contexts[J]. Computer Networks,2023,223:109576. [21] ZHOU Z,CHEN X,LI E,et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE,2019,107(8):1738-1762. [22] KHAN L,PANDEY S,TRAN N,et al. Federated learning for edge networks: Resource optimization and incentive mechanism[J]. IEEE Communications Magazine,2020,58(10):88-93. [23] CHAI Z,FAYYAZ H,FAYYAZ Z,et al. Towards taming the resource and data heterogeneity in federated learning[J]. Proceedings of the 2019 Conference on Operational Machine Learning (OpML 19),2019:19-21. [24] MEHTA M,CHEN S,TANG H,et al. A federated learning approach to mixed fault diagnosis in rotating machinery[J]. Journal of Manufacturing Systems,2023,68:687-694. [25] 陈世超,崔春雨,张华,等. 制造业生产过程中多源异构数据处理方法综述[J]. 大数据,2020,6(5):55-81. CHEN Shichao,CUI Chunyu,ZHANG Hua,et al. A survey on multi-source heterogeneous data processing methods in manufacturing process[J]. Big Data Research,2020,6(5):55-81. [26] 张洁,盛夏,张朋,等. 面向制造过程数据的两阶段无监督特征选择方法[J]. 机械工程学报,2019,55(17):133-144. ZHANG Jie,SHENG Xia,ZHANG Peng,et al. Two-stage unsupervised feature selection method oriented to manufacturing procedural data[J]. Journal of Mechanical Engineering,2019,55(17):133-144. [27] ARIVAZHAGAN M G,AGGARWAL V,SINGH A K,et al. Federated learning with personalization layers [DB/OL]. [2023-12-18]. https://arxiv. org/abs/1912. 0818v1. [28] SEYEDAN M,MAFAKHERI F,WANG C. Order-up-to-level inventory optimization model using time-series demand forecasting with ensemble deep learning[J]. Supply Chain Analytics,2023,3:100024. [29] 徐健,刘长良,王梓齐,等. 基于缺失数据填补的风电齿轮箱状态监测研究[J]. 仪器仪表学报,2022,43(9):88-97. XU Jian,LIU Changliang,WANG Ziqi,et al. Research on condition monitoring of wind turbine gearbox based on missing data imputation[J]. Chinese Journal of Scientific Instrument,2022,43(9):88-97.