Feature Boosting Framework for Pipeline Multi-sensing Defects Inspection Using an Intelligent Pig System
FU Yang1, ZHANG Yue2, MAO Ying2, TANG Xiaohua3, CHEN Zugao3, XU Hewu1, YANG Yupei1, GAO Bin1, TIAN Guiyun1,4
1. School of Automation Engineering, University of Electronic Science and Technology, Chengdu 611731; 2. PetroChina Zhejiang Oilfield Company, Yibin 645200; 3. Sichuan Deyuan Pipeline Technology Co., Ltd., Chengdu 610041; 4. School of Electrical and Electronic Engineering, Newcastle University, Newcastle, NE17RU UK
[1] 高鹏,高振宇,杜东,等. 2017年中国油气管道行业发展及展望[J]. 国际石油经济,2018,26(3):21-27. GAO Peng,GAO Zhenyu,DU Dong,et al. The development and prospect of China’s oil and gas pipeline industry in 2017[J]. International Petroleum Economics,2018,26(3):21-27. [2] MA Q,TIAN G,ZENG Y,et al. Pipeline in-line inspection method,instrumentation and data management[J]. Sensors,2021,21(11):3862. [3] 杨理践,耿浩,高松巍. 长输油气管道漏磁内检测技术[J]. 仪器仪表学报,2016,37(8):1736-1746. YANG Lijian,GENG Hao,GAO Songwei. Magnetic flux leakage internal detection technology of the long distance oil pipeline[J]. Chinese Journal of Scientific Instrument,2016,37(8):1736-1746. [4] 伍剑波,许钊源,吉方,等. 基于偏置磁化的管道内表面裂纹涡流热成像检测方法研究[J]. 机械工程学报,2021,57(22):80-87. WU Jianbo,XU Zhaoyuan,JI Fang,et al. DC-biased induction thermography for sub-surface defects of pipelines[J]. Journal of Mechanical Engineering,2021,57(22):80-87. [5] RIFAI D,ABDALLA A N,RAZALI R,et al. An eddy current testing platform system for pipe defect inspection based on an optimized eddy current technique probe design[J]. Sensors,2017,17(3):579. [6] 耿浩,夏浩,王国庆. 高速漏磁检测过程中管道内外壁缺陷定位方法研究[J]. 仪器仪表学报,2022,43(4):70-78. GENG Hao,XIA Hao,WANG Guoqing. Study on the defect location method of inner and outer wall of pipeline during high-speed magnetic flux leakage testing[J]. Chinese Journal of Scientific Instrument,2022,43(4):70-78. [7] 孙伟栋,杨阳,张建昌,等. 油气管道内检测数据深度分析[J]. 腐蚀与防护,2020,41(6):57-61. SUN Weidong,YANG Yang,ZHANG Jianchang,et al. Deep analysis of in-line inspection data in oil and gas pipelines[J]. Corrosion & Protection,2020,41(6):57-61. [8] 杨涛,仇攀,陈少松,等. 天然气管道内检测金属损失缺陷数据分析及验证评价[J]. 天然气技术与经济,2020,14(2):52-56. YANG Tao,QIU Pan,CHEN Shaosong,et al. Analysis,verification,and evaluation on in-line inspection data of metal loss defects in natural-gas pipelines[J]. Natural Gas Technology and Economy,2020,14(2):52-56. [9] 王庆峰,李跃辉,徐建庆,等. GPS卫星定位技术在埋地管道腐蚀检测中的应用[J]. 油气田地面工程,2003,22(12):32-35. WANG Qingfeng,LI Yuehui,XU Jianqing,et al. Application of GPS satellite positioning technology in buried pipeline corrosion detection[J]. Oil-Gas Field Surface Engineering,2003,22(12):32-35. [10] 王勇勇,孙全德,王恪典,等. 小径管内壁缺陷的涡流热成像定量检测[J]. 激光与红外,2021,51(3):333-338. WANG Yongyong,SUN Quande,WANG Kedian,et al. Quantitative detection of inner defects of small diameter tube by eddy current thermal imaging[J]. Laser & Infrared,2021,51(3):333-338. [11] 余兆虎,付跃文,江礼凡,等. 小径管脉冲远场涡流检测研究[J]. 机械工程学报,2021,57(6):10-18. YU Zhaohu,FU Yuewen,JIANG Lifan,et al. Study on inspection for small diameter tubes using pulsed remote field eddy current method[J]. Journal of Mechanical Engineering,2021,57(6):10-18. [12] YIN X C,LIU C P,HAN Z. Feature combination using boosting[J]. Pattern Recognition Letters,2005,26(14):2195-2205. [13] SCHAPIRE R E. Explaining adaboost[M]. Heidelberg :Springer,2013:37-52. [14] CAO Ying,MIAO Qiguang,LIU Jiachen,et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica,2013,39(6):745-758. [15] Friedman J H. Greedy function approximation:A gradient boosting machine[J]. Annals of statistics,2001:1189-1232. [16] Chandola V,Banerjee A,Kumar V. Anomaly detection:A survey[J]. ACM Computing Surveys,2009,41:15. [17] Meisenbacher S,Turowski M,Phipps K,et al. Review of automated time series forecasting pipelines[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2022,12(6):e1475. [18] CHEN R C,CARAKA R E,ARNITA N E G,et al. An end to end of scalable tree boosting system[J]. Sylwan,2020,165(1):1-11. [19] 王朗宁,侯炎磐,李彦峰. 数据参数影响RCS统计特征数据可分性[J]. 雷达科学与技术,2020,18(2):205-210,217. WANG Langning,HOU Yanpan,LI Yanfeng. Influences of sampling frequency and parameters of sliding window on radar target recognition using radar cross section features[J]. Radar Science and Technology,2020,18(2):205-210,217. [20] 李翼飞,吴春平,涂煊. 基于PCA与SVM的振动传感器故障诊断方法[J]. 自动化仪表,2019,40(10):48-52. LI Yifei,WU Chunping,TU Xuan. Fault Diagnosis method based on PCA and SVM for vibration sensor[J]. Process Automation Instrumentation,2019,40(10):48-52. [21] YIN W,BINNS R,DICKINSON S J,et al. Analysis of the liftoff effect of phase spectra for eddy current sensors[J]. IEEE Transactions on Instrumentation and Measurement,2007,56(6):2775-2781. [22] CHEN Q,ZHANG Q,NIU X,et al. Positioning accuracy of a pipeline surveying system based on MEMS IMU and odometer:Case study[J]. IEEE Access,2019,7:104453-104461. [23] WANG D,YEUNG D S,TSANG E C C. Structured one-class classification[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2006,36(6):1283-1295. [24] ERFANI S M,RAJASEGARAR S,KARUNASEKERA S,et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition,2016,58:121-134. [25] LIU F T,TING K M,ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data (TKDD),2012,6(1):1-39.