[1] MOHD J J,LEARY M,SUBIC A,et al. A review of shape memory alloy research,applications and opportunities[J]. Materials & Design,2014,56(4):1078-1113. [2] CHEN Xiang,LIU Teng,LI Rui,et al. Molecular dynamics simulation on the shape memory effect and superelasticity in NiTi shape memory alloy[J]. Computational Materials Science,2018,146:61-69. [3] UEHARA T,ASAI C,OHNO N. Molecular dynamics simulation of shape memory behaviour using a multi-grain model[J]. Modelling & Simulation in Materials Science & Engineering,2009,17(3):035011. [4] KO W S,MAISEL S B,GRABOWSKI B,et al. Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys[J]. Acta Materialia,2017,123:90-101. [5] PIOTROWSKI B,ZINEB T B,PATOOR E,et al. Modeling of niobium precipitates effect on the Ni47Ti44Nb9 shape memory alloy behavior[J]. International Journal of Plasticity,2012,36(1):130-147. [6] GALL K,SEHITOGLU H. The role of texture in tension-compression asymmetry in polycrystalline NiTi[J]. International Journal of Plasticity,1999,15(1):69-92. [7] 朱祎国,张杨,赵聃. 多晶NiTi形状记忆合金相变的细观力学本构模型[J]. 金属学报,2013,49(1):123-128. ZHU Yiguo,ZHANG Yang,ZHAO Dan. Micromechanical constitutive model for phase transformation of NiTi polycrystal SMA[J]. Acta Metallurgica Sinica,2013,49(1):123-128. [8] 周博,王振清,梁文彦. 形状记忆合金的细观力学本构模型[J]. 金属学报,2006,42(9):919-924. ZHOU Bo,WANG Zhenqing,LIANG Wenyan. A micromechanical constitutive model of shape memory alloys[J]. Acta Metallurgica Sinica,2006,42(9):919-924. [9] ARGHAVANI J,AURICCHIO F,NAGHDABADI R,et al. A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings[J]. International Journal of Plasticity,2010,26(7):976-991. [10] LAGOUDAS D,HARTL D,CHEMISKY Y,et al. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[J],International Journal of Plasticity,2012,32-33:155-183. [11] 周博,刘彦菊,冷劲松,等. 形状记忆合金的宏观力学本构模型[J]. 中国科学:物理学力学天文学,2009(7):998-1006. ZHOU Bo,LIU Yanju,LENG Jinsong,et al. Macro-mechanical constitutive model of shape memory alloys[J]. Science China Physics,Mechanics & Astronomy,2009(7):998-1006. [12] 李云飞,陈成,曾祥国. NiTi合金的相变-塑性统一本构模型与数值算法[J]. 航空材料学报,2018,38(1):26-32. LI Yunfei,CHEN Cheng,ZENG Xiangguo. Unified constitutive model and numerical implementation of niti alloy involving phase transformation and plasticity[J]. Journal of Aeronautical Materials,2018,38(1):26-32. [13] 陈斌. 镍钛铌形状记忆合金宏细观力学行为研究[D]. 重庆:重庆大学,2013. CHEN Bin. Research of micro and macro mechanical behavior of NiTiNb shape memory alloy[D]. Chongqing:Chongqing University,2013. [14] 陈翔. 镍钛铌形状记忆合金特性的试验与本构模型研究[D]. 重庆:重庆大学,2015. CHEN Xiang. Experimental investigation and constitutive modeling for thermal-mechanical properties of NiTiNb SMA[D]. Chongqing:Chongqing University,2015. [15] 康泽天,周博,薛世峰. 形状记忆合金管接头热机耦合行为的有限元数值模拟[J]. 机械工程学报,2018,54(18):68-75. KANG Zetian,ZHOU Bo,XUE Shifeng. Finite element numerical simulation on thermo-mechanical coupling behavior in shape memory alloy pipe connection[J]. Journal of Mechanical Engineering,2018,54(18):68-75. [16] 陈强,王克鲁,鲁世强,等. Φ10mm NiTiNb形状记忆合金管接头数值模拟分析[J],热加工工艺,2017,46(2):74-77. CHEN Qiang,WANG Kelu,LU Shiqiang,et al. Numerical simulation and analysis of Φ10mm NiTiNb shape memory alloy tube joints[J]. Hot Working Technology,2017,46(2):74-77. [17] 徐祥,阚前华,康国政. 镍钛形状记忆合金管接头有限元分析[J]. 四川理工学院学报:自然科学版,2016,29(4):26-30. XU Xiang,KAN Qianhua,KANG Guozheng. Finite analysis of nickel-titanium shape memory alloy pipe joints[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition),2016,29(4):26-30. [18] PIAO M,OTSUKA K,MIYAZAKI S,et al. Mechanism of the as temperature increase by pre-deformation in thermoelastic alloys[J]. Materials Transactions,JIM,1993,34(10):919-929. [19] PIAO M,MIYAZAKI S,OTSUKA K,Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy[J]. Materials Transactions,JIM,1992,33(4):346-353. [20] ZHANG Chunsheng,ZHAO Liancheng,DUERIG T W,et al. Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy[J]. Scripta Metallurgica et Materialia,1990,24(9):1807-1812. [21] CHEN Xiang,PENG Xianghe,CHEN Bin,et al. Experimental investigation on transformation,reorientation and plasticity of Ni47Ti44Nb9 SMA under biaxial thermal-mechanical loading[J]. Smart Materials and Structures,2015,24(7):1-12. [22] LEMAITRE J,CHABOCHE J L. Mechanics of Solid Materials[J]. Journal of Engineering Mechanics,1992,119(3):642-643. [23] SOUZA A C,MAMIYA E N,ZOUAIN N. Three-dimensional model for solids undergoing stress-induced phase transformations[J]. European Journal of Mechanics,A/Solids,1998,17(5):789-806. [24] FRÉMOND M,MIYAZAKI S. Shape memory alloys[M]. Udine:Springer,Vienna Press,1996. [25] AURICCHIO F,CONTI M,MORGANTI S,et al. Shape memory alloy:from constitutive modeling to finite element analysis of stent deployment[J]. Computer Modeling in Engineering & Sciences,2010,57(3):225-244. [26] BO Zhonghe,LAGOUDAS D C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading,Part III:evolution of plastic strains and two-way shape memory effect[J]. International Journal of Engineering Science,1999,37(9):1175-1203. [27] 杜泓飞,曾攀,赵加清,等. NiTi合金中马氏体相变失稳与局部化的原位多场研究[J]. 金属学报,2013,49(1):17-25. DU Hongfei,ZENG Pan,ZHAO Jiaqing,et al. In situ multi-fields investigation on instability and transformation localization of martensitic phase transformation in NiTi alloys[J]. Acta Metallurgica Sinica,2013,49(1):17-25. |