[1] EL HACHEMI BENBOUZID M. A review of induction motors signature analysis as a medium for faults detection[J]. IEEE Transactions on Industrial Electronics, 2000,47(5):984-993. [2] RODRIGUE P J,BELAHCEN A,ARKKIO A. Signatures of electrical faults in the force distribution and vibration pattern of induction motors[J]. IEEE Proceedings-Electric Power Applications,2006,153(4):523-529. [3] FILIPPETTI F,FRANCESCHINI G,TASSONI C,et al. AI techniques in induction machines diagnosis including the speed ripple effect[J]. IEEE Transactions on Industry Applications,1998,34(1):98-108. [4] HAJNAYEB A,GHASEMLOONIA A,KHADEM S E,et al. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis[J]. Expert Systems with Applications,2011,38(8):10205-10209. [5] YOON H,PARK C,KIM J S,et al. Algorithm learning based neural network integrating feature selection and classification[J]. Expert Systems with Applications,2013, 40(1):231-241. [6] MALHI A,YAN R,GAO R X. Prognosis of defect propagation based on recurrent neural networks[J]. IEEE Transactions on Instrumentation and Measurement,2011, 60(3):703-711. [7] 袁胜发,褚福磊,何永勇. 基于网络支持向量机的涡轮泵多故障诊断[J]. 机械工程学报,2007,43(4):152-158. YUAN Shengfa,CHU Fulei,HE Yongyong. Multi-fault diagnosis for turbo-pump based on mesh support vector machines[J]. Chinese Journal of Mechanical Engineering,2007,43(4):152-158. [8] 刘贵立,张国英. 基于小波包的遗传神经网络故障诊断系统研究[J]. 机械工程学报,2000,36(9):110-112. LIU Guili,ZHANG Guoying. Study on genetic neural network of the fault diagnosis based on wavelet packet[J]. Chinese Journal of Mechanical Engineering,2000,36(9):110-112. [9] 李巍华,张盛刚. 基于改进证据理论及多神经网络融合的故障分类[J]. 机械工程学报,2010,46(9):93-99. LI Weihua,ZHANG Shenggang. Fault classification based on improved evidence theory and multiple neural network fusion[J]. Journal of Mechanical Engineering,2010, 46(9):93-99. [10] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience & Remote Sensing,2014,52(1):439-451. [11] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507. [12] SCHMIDHUBER J. Multi-column deep neural networks for image classification[J]. Eprint. Arxiv.,2012,157(10): 3642-3649. [13] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems,2012,25:1106-1114. [14] HINTON G,DENG L,YU D,et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine,2012,29(6):82-97. [15] WRIGHT J,MA Y,MAIRAL J,et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of IEEE,2010,98(6):1031-1044. [16] RANZATO M,BOUREAU Y L,LECUN Y. Sparse feature learning for deep belief networks[C]// Twenty-first Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007:1185-1192. [17] BOUREAU Y L,BACH F,LECUN Y,et al. Learning mid-level features for recognition[C]// 2010 IEEE Conference on Computer Vision and Patten Recognition, June 13-18,2010,San Francisco,CA,2010:2559-2566. [18] SHIN H C,ORTON M R,COLLINS D J,et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Software Engineering,2013,35(8):1930-1943. [19] OLSHAUSEN B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature,1996,381(6583):607-609. [20] KULLBACK S,LEIBLER R A. On information and sufficiency[J]. Annals of Mathematical Statistics,1951,22(1):79-86. [21] RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back propagating errors[J]. Nature,1986,323(6088):533-536. [22] VINCENT P,LAROCHELLE H,BENGIO Y,et al. Extracting and composing robust features with denoising autoencoders[C] // Proceedings of the 25th International Conference on Machine Learning. July 5-9,2008, Helsinki,Finland, 2008:1096-1103. [23] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Research Gate,2012,3(4):212-223. [24] COATES A,NG A Y,LEE H. An analysis of single-layer networks in unsupervised feature learning[J]. Journal of Machine Learning Research,2011,15:215-223. [25] JI Dou,WANG Xiangjun. Fault diagnosis of DC machine based on DS evidential theory and BP network[J]. Marine Electric & Electronic Engineering,2007,27(4):204-206. [26] AN Xueli,JIANG Dongxiang,LI Shaohua. Application of back propagation neural network to fault diagnosis of direct-drive wind turbine[C]// World Non-Grid-Connected Wind Power and Energy Conference,November 5-7,2010, Nanjing,China, 2010:1-5. [27] SUN Yanjing,ZHANG Shen,MIAO Changxin, et al. Improved BP neural network for transformer fault diagnosis[J]. Journal of China University of Mining and Technology,2007,17(1):138-142. [28] KHASHEI M,ZEINAL H A,BIJARI M. A novel hybrid classifi-cation model of artificial neural networks and multiple linear regression models[J]. Expert Systems with Applications,2012,39(3):2606-2620. [29] BOUCHARD G. Clustering and classification employing softmax function including efficient bounds:US,US 8065246 B2[P]. 2011-11-22. |