• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (9): 92-100.doi: 10.3901/JME.2017.09.092

• • 上一篇    下一篇

扫码分享

基于图嵌入概率半监督判别分析的故障辨识*

李锋1, 汤宝平2, 王家序1, 林建辉3   

  1. 1. 四川大学制造科学与工程学院 成都 610065;
    2. 重庆大学机械传动国家重点实验室 重庆 400044;
    3. 西南交通大学牵引动力国家重点实验室 成都 610031
  • 出版日期:2017-05-05 发布日期:2017-05-05
  • 作者简介:

    李锋,男,1982年出生,博士,副教授,硕士研究生导师。主要研究方向为设备状态监测与故障诊断和信号分析与处理。

    E-mail:lifeng19820501@163.com

    林建辉(通信作者),男,1964年出生,教授,博士研究生导师。主要研究方向为机车车辆、高速列车检测技术和信号分析与故障诊断。

    E-mail:lin13008104673@126.com

  • 基金资助:
    * 国家自然科学基金青年科学基金(51305283)和中国博士后科学基金(2016M602685)资助项目; 20160510收到初稿,20161220收到修改稿;

Fault Identification Method Based on Graph-implanted Probability-based Semi-supervised Discriminant Analysis

LI Feng1, TANG Baoping2, WANG Jiaxu1, LIN Jianhui3   

  1. 1. School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065;
    2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044;
    3. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031
  • Online:2017-05-05 Published:2017-05-05

摘要:

针对现有旋转机械早期故障辨识方法在训练样本稀少条件下辨识性能极易衰退的关键问题,提出基于图嵌入概率半监督判别分析(Graph-implanted probability-based semi-supervised discriminant analysis, GIPSSDA)维数化简的早期故障辨识方法。该方法在训练样本稀少条件下用GIPSSDA将训练和待测样本的高维时、频域早期故障特征集化简为类区分性更好的低维特征矢量,提高了终端学习机优化证据理论K近邻分类器(Optimized evidence-theoretic k-nearest neighbor classifier, OET-KNNC)对早期故障的辨识精度。GIPSSDA集成了半监督邻接图嵌入技术,能同时利用待测样本的类判别信息和局部几何结构搜索分类的最优映射子空间,因此在训练样本非常稀少的情况下也能产生较好的分类效果。深沟球轴承早期故障辨识试验验证了该早期故障辨识方法的有效性和优越性。

关键词: 流形学习, 图嵌入概率半监督判别分析, 维数化简, 早期故障辨识, 旋转机械

Abstract:

:Facing on the crucial problem that the recognition function of current early fault identification methods for rotating machinery declines easily in condition of sparse training samples, a novel early fault identification method based on dimensionality reduction with graph-implanted probability-based semi-supervised discriminant analysis (GIPSSDA) is proposed in this paper. In the case of sparse training samples, GIPSSDA is proposed to reduce the high-dimensional time-frequency domain early fault feature sets of training and testing samples to the low-dimensional eigenvectors with better category segregation, so that the early fault identification accuracy of the terminal learning machine called Optimized Evidence-Theoretic k-Nearest Neighbor Classifier (OET-KNNC) is improved. With the incorporation of the semi-supervised graph-implanted technique, GIPSSDA can exploit both discriminative information and locality geometry of testing samples to search for the optimal projection subspace for classification, which allows GIPSSDA to bring about good classification effect even if the training sample set is small. Experimental results of early fault identification on deep groove ball bearings show the effectiveness and advantage of the proposed method.

Key words: dimensionality reduction, early fault identification, graph-implanted probability-based semi-supervised discriminant analysis, manifold learning, rotating machinery