机械工程学报 ›› 2017, Vol. 53 ›› Issue (19): 3-21.doi: 10.3901/JME.2017.19.003
冯平法1,2, 王健健1, 张建富1, 吴志军1
收稿日期:
2016-10-15
修回日期:
2017-02-05
出版日期:
2017-10-05
发布日期:
2017-10-05
通讯作者:
王健健(通信作者),男,1988年出生,博士研究生。主要研究方向为硬脆材料旋转超声加工、动力卡盘性能分析与优化,E-mail:wangjj11@foxmail.com
作者简介:
冯平法,男,1966年出生,博士,教授,博士研究生导师。主要研究方向为高速精密切削技术、旋转超声精密加工技术、数控加工精度原位检测技术、制造装备性能分析与优化设计技术,E-mail:fengpf@mail.tsinghua.edu.cn
基金资助:
FENG Pingfa1,2, WANG Jianjian1, ZHANG Jianfu1, WU Zhijun1
Received:
2016-10-15
Revised:
2017-02-05
Online:
2017-10-05
Published:
2017-10-05
摘要: 旋转超声加工是一种复合特种加工技术,它复合了传统超声加工和普通磨削加工的材料去除方式,在提高硬脆材料去除效率、减小切削力、提高加工精度和表面完整性等方面具有显著优势。自旋转超声加工技术发明至今,国内外学者开展了大量的有关旋转超声加工装备及工艺的研究工作,并且已在几乎所有主要的硬脆难加工材料中得到实际应用。本研究在简要概述旋转超声加工技术的基本原理和发展过程基础上,总结国内外学者在材料去除机理、工艺特性、加工新形式以及装备研发等几方面的主要研究成果,并对旋转超声加工技术的发展趋势及值得关注的问题进行展望。
中图分类号:
冯平法, 王健健, 张建富, 吴志军. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19): 3-21.
FENG Pingfa, WANG Jianjian, ZHANG Jianfu, WU Zhijun. Research Status and Future Prospects of Rotary Ultrasonic Machining of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2017, 53(19): 3-21.
[1] INASAKI I. Grinding of hard and brittle materials[J]. CIRP Annals-Manufacturing Technology,1987,36(2):463-471. [2] THOE T B,ASPINWALL D K,WISE M L H. Review on ultrasonic machining[J]. International Journal of Machine Tools and Manufacture,1998,38(4):239-255. [3] MOMBER A W,KOVACEVIC R. Principles of abrasive water jet machining[M]. London:Springer Science & Business Media,2012. [4] CHRYSSOLOURIS E. Laser machining:Theory and practice[M]. London:Springer Science & Business Media,2013. [5] ABBAS N M,SOLOMON D G,BAHARI M F. A review on current research trends in electrical discharge machining (EDM)[J]. International Journal of machine tools and Manufacture,2007,47(7):1214-1228. [6] MEIJER J. Laser beam machining (LBM),state of the art and new opportunities[J]. Journal of Materials Processing Technology,2004,149(1):2-17. [7] BHOSALE S B,PAWADE R S,BRAHMANKAR P K. Effect of process parameters on MRR,TWR and surface topography in ultrasonic machining of alumina-zirconia ceramic composite[J]. Ceramics International,2014,40(8):12831-12836. [8] HUANG Z,GEYER N,WERNER P,et al. Metal-assisted chemical etching of silicon:A review[J]. Advanced materials,2011,23(2):285-308. [9] SINGH R P. Rotary ultrasonic machining:A review[J]. Materials and Manufacturing Processes,2016,1:1795-1824. [10] WOOD R W,LOOMIS A L. XXXVⅢ. The physical and biological effects of high-frequency sound-waves of great intensity[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1927:4(22),417-436. [11] ROZENBERG L D. Ultrasonic cutting[M]. London:Springer,1964.[12 SPRINGBORN R K. Non-traditional machining processes[M]. Detroit:American Society of Tool and Manufacturing Engineers,1967. [13] CONG W,PEI Z. Process of ultrasonic machining[M]//Handbook of Manufacturing Engineering and Technology,London:Springer,2014. [14] KHAIRY A B E. Assessment of some dynamic parameters for the ultrasonic machining process[J]. Wear. 1990,137(2):187-198. [15] LEGGE P. Machining without abrasive slurry[J]. Ultrasonics. 1966,4(3):157-162. [16] SONIC-MILL. Contract machining services[EB/OL]. 2016. http://www.sonicmill.com/machine.html. [17] DMG-MORI. Ultraso[EB/OL]. 2016. http://de.dmgmori.com/produkte/ultrasonic/ultrasonic-universal. [18] AREUSE. Ultranic milling center[EB/OL]. 2016. http://www.ultrasonic.co.jp/ryoga_main.html. [19] TAKESHO. URT40-F41[EB/OL]. 2016. http://www.takesho.co.jp/products/atc. [20] CONG W L,PEI Z J,TREADWELL C. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks[J]. Ultrasonics,2014,54(6):1594-1602. [21] BERTSCHE E,EHMANN K,MALUKHIN K. Ultrasonic slot machining of a silicon carbide matrix composite[J]. The International Journal of Advanced Manufacturing Technology,2013,66(5-8):1119-1134. [22] DEBNATH K,SINGH I,DVIVEDI A. Rotary mode ultrasonic drilling of glass fiber-reinforced epoxy laminates[J]. Journal of Composite Materials,2015,49(8):949-963. [23] 张承龙,冯平法,张建富. 光学玻璃旋转超声端面铣削表面特性[J]. 清华大学学报,2012(11):1616-1621. ZHANG Chenglong,FENG Pingfa,ZHANG Jianfu. Optical glass rotating ultrasonic surface milling surface characteristics[J]. Journal of Tsinghua University,2012(11):1616-1621. [24] GENG D,ZHANG D,XU Y,et al. Rotary ultrasonic elliptical machining for side milling of CFRP:Tool performance and surface integrity[J]. Ultrasonics. 2015,59:128-137. [25] 段巍,宫虎,王羿,等. 旋转超声加工光纤预制棒预应力深孔[J]. 纳米技术与精密工程,2016(2):130-133. DUAN Wei,GONG Hu,WANG Yi,et al. Rotary ultrasonic machining of prestressed holes in optical fiber preforms[J]. Nanotechnology and Precision Engineering,2016(2):130-133. [26] LV D,HUANG Y,TANG Y,et al. Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes[J]. International Journal of Advanced Manufacturing Technology,2013,67(1-4SI):613-622. [27] DING K,FU Y,SU H,et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining[J]. Journal of Materials Processing Technology,2014,214(12):2900-2907. [28] 郑书友. 旋转超声加工机床的研制及试验研究[D]. 厦门:华侨大学,2008. ZHENG Shuyou. Development of a rotary ultrasonic machine and experimental study of machining on the machine[D]. Xiamen:Huaqiao University,2008. [29] 马付建. 超声辅助加工系统研发及其在复合材料加工中的应用[D]. 大连:大连理工大学,2013. MA Fujian. The development of ultrasonic assisted machining system and its application in machining on composites[D]. Dalian:Dalian University of Technology,2013. [30] 杨志斌. 旋转超声加工装置的设计与新型变幅杆的研究[D]. 太原:太原理工大学,2008. YANG Zhibin. Design of rotary ultrasonic machining equipment and research on new type of ultrasonic horn[D]. Taiyuan:Taiyuan University of Technology,2008. [31] 姚震. 旋转超声加工振动系统及电源技术研究[D]. 广州:广东工业大学,2015. YAO Zhen. The research of a rotary ultrasonic vibration system and power technology[D]. Guangzhou:Guangdong University of Technology,2015. [32] 李贵花. 旋转超声加工振动系统的研究[D]. 北京:北方工业大学,2010. LI Guihua. The research of a rotary ultrasonic machining system[D]. Beijing:North China University of Technology,2010. [33] 苏旻彦. 超音波振动辅助刀把之研究[D]. 台中:台湾中兴大学,2013. SU Wenyan. A study of the oscillating tool for ultrasonic vibration assisted spindle[D]. Taizhong:Taiwan Chung Hsing University,2013. [34] UHLMANN E,SAMMLER C. Influence of coolant conditions in ultrasonic assisted grinding of high performance ceramics[J]. Production Engineering,2010,4(6):581-587. [35] ZHANG C,CONG W,FENG P,et al. Rotary ultrasonic machining of optical K9 glass using compressed air as coolant:A feasibility study[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2014,228(4):504-514. [36] WANG J,FENG P,ZHANG J. Reduction of edge chipping in rotary ultrasonic machining by using step drill:A feasibility study[J]. The International Journal of Advanced Manufacturing Technology,2016,87:2809-2819. [37] ZHANG C L,FENG P F,PEI Z J,et al. Rotary ultrasonic machining of sapphire:Feasibility study and designed experiments[J]. Key Engineering Materials,2013,589-590:523-528. [38] ZENG W M,LI Z C,PEI Z J,et al. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics[J]. International Journal of Machine Tools and Manufacture,2005,45(12-13):1468-1473. [39] NING F D,CONG W L,PEI Z J,et al. Rotary ultrasonic machining of CFRP:A comparison with grinding[J]. Ultrasonics,2016,66:125-132. [40] CHURI N J,PEI Z J,TREADWELL C. Rotary ultrasonic machining of titanium alloy (Ti-6Al-4V):Effects of tool variables[J]. International Journal of Precision Technology,2007,1(1):85-96. [41] CONG W,PEI Z J,VAN VLEET E G,et al. Surface roughness in rotary ultrasonic machining of stainless steels[C]//ⅡE Annual Conference. Proceedings. Institute of Industrial Engineers-Publisher,2009:1477. [42] WANG Q,CONG W,PEI Z J,et al. Rotary ultrasonic machining of potassium dihydrogen phosphate (KDP) crystal:An experimental investigation on surface roughness[J]. Journal of Manufacturing Processes,2009,11(2):66-73. [43] WANG S,CHUEH T. Analysis of material removal rate and surface roughness on advanced ceramics materials micro-hole drilling[J]. Public Health Frontier,2012,1(1):11-15. [44] ZHANG C. Investigation into the rotary ultrasonic face milling of K9 glass with mechanism study of material removal[J]. International Journal of Manufacturing Technology and Management,2012,25(4):248-266. [45] LV D,HUANG Y,WANG H,et al. Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass[J]. Journal of Materials Processing Technology,2013,213(9):1548-1557. [46] ZHOU M,WANG M,DONG G. Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites[J]. Materials and Manufacturing Processes,2016,31(5):673-678. [47] TESFAY H D,XU Z,LI Z C. Ultrasonic vibration assisted grinding of bio-ceramic materials:An experimental study on edge chippings with Hertzian indentation tests[J]. The International Journal of Advanced Manufacturing Technology,2016,86(9-12):3483-3494. [48] XIAO X,ZHENG K,LIAO W. Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics[J]. The International Journal of Advanced Manufacturing Technology,2014,75(9-12):1263-1277. [49] ZHANG C,ZHANG J,FENG P. Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials[J]. The International Journal of Advanced Manufacturing Technology,2013,69(1-4):161-170. [50] PEI Z J,FERREIRA P M,KAPOOR S G,et al. Rotary ultrasonic machining for face milling of ceramics[J]. International Journal of Machine Tools and Manufacture,1995,35(7):1033-1046. [51] ZHANG J,WANG D,FENG P,et al. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals[J]. Advances in Mechanical Engineering,2015,7(9):757539271. [52] ZHANG C,FENG P,ZHANG J. Ultrasonic vibration-assisted scratch-induced characteristics of C-plane sapphire with a spherical indenter[J]. International Journal of Machine Tools and Manufacture,2013,64:38-48. [53] CAO J,WU Y,LI J,et al. Study on the material removal process in ultrasonic-assisted grinding of SiC ceramics using smooth particle hydrodynamic (SPH) method[J]. The International Journal of Advanced Manufacturing Technology,2016,83(5-8):985-994. [54] LV D,WANG H,TANG Y,et al. Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7[J]. Precision Engineering. 2013,37(4):839-848. [55] FENG P,LIANG G,ZHANG J. Ultrasonic vibration-assisted scratch characteristics of silicon carbide-reinforced aluminum matrix composites[J]. Ceramics International,2014,40(7):10817-10823. [56] ZHANG J,WANG D,FENG P,et al. Material removal characteristics of KDP crystal in ultrasonic vibration-assisted scratch process[J]. Materials and Manufacturing Processes,2016,31(8):1037-1045. [57] NATH C,LIM G C,ZHENG H Y. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics[J]. Ultrasonics,2012,52(5):605-613. [58] LV D,ZHANG Y,PENG Y. High-frequency vibration effects on hole entrance chipping in rotary ultrasonic drilling of BK7 glass[J]. Ultrasonics,2016,72:47-56. [59] LV D,WANG H,TANG Y,et al. Surface observations and material removal mechanisms in rotary ultrasonic machining of brittle material[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2012,226(9):1479-1488. [60] SINGH R P,SINGHAL S. Rotary ultrasonic machining of macor ceramic:An experimental investigation and microstructure analysis[J]. Materials and Manufacturing Processes,2016:1-13. [61] 吕东喜. 硬脆材料旋转超声加工高频振动效应的研究[D]. 哈尔滨:哈尔滨工业大学,2014. LÜ Dongxi. High frequency vibration effects in rotary ultrasonic machining hard-brittle material[D]. Harbin:Harbin Institute of Technology,2014. [62] 梁桂强. 高体积分数SiCp/Al超声振动辅助磨削加工工艺特性研究[D]. 长春:吉林大学,2016. LIANG Guiqiang. Process characteristics research on ultrasonic assisted grinding of SiCp/Al composites with high volume fraction[D]. Changchun:Qilin University,2016. [63] 张承龙. 光学材料旋转超声高效精密加工机理与工艺特性研究[D]. 北京:清华大学,2013. ZHANG Chenglong. Mechanism and process characteristics study on rotary ultrasonic machining for high efficiency and precision processing of optical materials[D]. Beijing:Tsinghua University,2013. [64] PEI Z J,FERREIRA P M,HASELKORN M. Plastic flow in rotary ultrasonic machining of ceramics[J]. Journal of Materials Processing Technology,1995,48(1-4):771-777. [65] KUMAR J. Ultrasonic machining-a comprehensive review[J]. Machining Science and Technology,2013,17(3):325-379. [66] PEI Z,PRABHAKAR D,FERREIRA P M,et al. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining[J]. Journal of Engineering for Industry,1995,117(2),142-151. [67] ASTASHEV V K,BABITSKY V I. Ultrasonic processes and machines:dynamics,control and applications[M]. Berlin:Springer Heidelberg,2007:332-333. [68] CHURI N. Rotary ultrasonic machining of hard-to-machine materials[D]. Manhattan:Kansas State University,2010. [69] LIU D,CONG W L,PEI Z J,et al. A cutting force model for rotary ultrasonic machining of brittle materials[J]. International Journal of Machine Tools and Manufacture,2012,52(1):77-84. [70] 张承龙,冯平法,吴志军,等. 旋转超声钻削的切削力数学模型及试验研究[J]. 机械工程学报. 2011,47(15):149-155. ZHANG Chenglong,FENG Pingfa,WU Zhijun,et al. Mathematical modeling and experimental research for cutting force in rotary ultrasonic drilling[J]. Journal of Mechanical Engineering,2011,47(15):149-155. [71] YUAN S,ZHANG C,AMIN M,et al. Development of a cutting force prediction model based on brittle fracture for carbon fiber reinforced polymers for rotary ultrasonic drilling[J]. The International Journal of Advanced Manufacturing Technology,2015,81(5-8):1223-1231. [72] CONG W L,PEI Z J,SUN X,et al. Rotary ultrasonic machining of CFRP:A mechanistic predictive model for cutting force[J]. Ultrasonics,2014,54(2):663-675. [73] ZHANG C,YUAN S,AMIN M,et al. Development of a cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling[J]. The International Journal of Advanced Manufacturing Technology,2016,85(1-4):573-583. [74] LIU S,CHEN T,WU C. Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP):A study on cutting force model[J]. The International Journal of Advanced Manufacturing Technology,2017,89(1):847-856. [75] ZHANG C,FENG P,ZHENG S,et al. Experimental investigation of rotary ultrasonic face milling of K9 glass[J]. Advanced Materials Research,2011:230-232,644-648. [76] ZENG W M,LI Z C,CHURI N J,et al. Experimental investigation into rotary ultrasonic machining of alumina[C]//ASME 2004 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,2004:207-212. [77] DING K,FU Y,SU H,et al. Experimental studies on matching performance of grinding and vibration parameters in ultrasonic assisted grinding of SiC ceramics[J]. The International Journal of Advanced Manufacturing Technology,2017,88(9):2527-2535 [78] GU W,YAO Z,LIANG X. Material removal of optical glass BK7 during single and double scratch tests[J]. Wear,2011,270(3-4):241-246. [79] WANG Y,LIN B,WANG S,et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J]. International Journal of Machine Tools and Manufacture,2014,77:66-73. [80] WANG Y,LIN B,CAO X,et al. An experimental investigation of system matching in ultrasonic vibration assisted grinding for titanium[J]. Journal of Materials Processing Technology. 2014,214(9):1871-1878. [81] WANG Y,LIN B,ZHANG X. Research on the system matching model in ultrasonic vibration-assisted grinding[J]. The International Journal of Advanced Manufacturing Technology,2014,70(1-4):449-458. [82] LV D,TANG Y,WANG H,et al. Experimental investigations on subsurface damage in rotary ultrasonic machining of glass BK7[J]. Machining Science and Technology,2013,17(3):443-463. [83] AHMED Y,CONG W L,STANCO M R,et al. Rotary ultrasonic machining of alumina dental ceramics:A preliminary experimental study on surface and subsurface damages[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2012,134(0645016). [84] WANG J,ZHA H,FENG P,et al. On the mechanism of edge chipping reduction in rotary ultrasonic drilling:A novel experimental method[J]. Precision Engineering,2016,44:231-235. [85] WANG J,ZHANG C,FENG P,et al. A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass[J]. The International Journal of Advanced Manufacturing Technology,2016,83(1-4):347-355. [86] LV D,WANG H,ZHANG W,et al. Subsurface damage depth and distribution in rotary ultrasonic machining and conventional grinding of glass BK7[J]. The International Journal of Advanced Manufacturing Technology,2016,86(9-12):2361-2371. [87] WEI Shiliang,ZHAO Hong,JING Juntao,et al. Investigation on surface micro-crack evaluation of engineering ceramics by rotary ultrasonic grinding machining[J]. The International Journal of Advanced Manufacturing Technology,2015,81(1):483-492. [88] WANG J,FENG P,ZHANG J,et al. Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials[J]. International Journal of Machine Tools and Manufacture. 2016,101:18-27. [89] WANG J,FENG P,ZHANG J. Investigations on the edge-chipping reduction in rotary ultrasonic machining using a conical drill[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2016,230(7):1254-1263. [90] ZHANG C,FENG P,WU Z,et al. An experimental study on processing performance of rotary ultrasonic drilling of K9 glass[J]. Advanced Materials Research,2011,230-232:221-225. [91] JIAO Y,LIU W J,PEI Z J,et al. Study on edge chipping in rotary ultrasonic machining of ceramics:An integration of designed experiments and finite element method analysis[J]. Journal of Manufacturing Science and Engineering,2005,127(4):752-758. [92] CONG W L,FENG Q,PEI Z J,et al. Edge chipping in rotary ultrasonic machining of silicon[J]. International Journal of Manufacturing Research,2012,7(3):311-329. [93] LI Z C,CAI L,PEI Z J,et al. Edge-chipping reduction in rotary ultrasonic machining of ceramics:Finite element analysis and experimental verification[J]. International Journal of Machine Tools and Manufacture,2006,46(12-13):1469-1477. [94] GONG H,FANG F Z,ZHANG X F,et al. Study on the reduction strategy of machining-induced edge chipping based on finite element analysis of in-process workpiece structure[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2013,135(1):0110171. [95] WANG J,FENG P,ZHENG J,et al. Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill[J]. Ceramics International,2016,42(12):13387-13394. [96] LÜ D. Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7[J]. The International Journal of Advanced Manufacturing Technology,2016,84(5-8):1443-1455. [97] GENG D,ZHANG D,XU Y,et al. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP[J]. Journal Of Reinforced Plastics and Composites,2014,33(9):797-809. [98] CONG W L,PEI Z J,DEINES T W,et al. Rotary ultrasonic machining of CFRP using cold air as coolant:Feasible regions[J]. Journal of Reinforced Plastics and Composites,2011,30(10):899-906. [99] LIU Y,ZHAO H,JING J,et al. Investigation on the bonding strength patterns of ultrasonic vibration tools and influence on working performance during rotary ultrasonic grinding[J]. The International Journal of Advanced Manufacturing Technology,2013,65(1-4):533-541. [100] DING K,FU Y,SU H,et al. Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide[J]. The International Journal of Advanced Manufacturing Technology,2014,71(9-12):1929-1938. [101] 崔西亮,田彪,王永国. 碳纤维复合材料钻孔加工的缺陷分析[J]. 机电工程,2013(2):182-184. CUI Xiliang,TIAN Biao,WANG Yongguo. Carbon fiber reinforced plastic drilling defect analysis[J]. Journal of Mechanical and Electrical Engineering,2013(2):182-184. [102] 毕铭智. C/SiC复合材料钻、铣加工技术的试验研究[D]. 大连:大连理工大学,2013. BI Mingzhi. Experimental research on drilling and milling of C/SiC composites[D]. Dalian:Dalian University of Techonolgy. [103] CONG W L,PEI Z J,FENG Q,et al. Rotary ultrasonic machining of CFRP:A comparison with twist drilling[J]. Journal of Reinforced Plastics and Composites,2012,31(5):313-321. [104] CONG W L,PEI Z J,DEINES T W,et al. Rotary ultrasonic machining of CFRP composites:A study on power consumption[J]. Ultrasonics,2012,52(8):1030-1037. [105] CONG W L,PEI Z J,DEINES T W,et al. Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate[J]. Composites Part B:Engineering,2013,52:303-310. [106] CHE D,SAXENA I,HAN P,et al. Machining of carbon fiber reinforced plastics/polymers:A literature review[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2014,136(0340013). [107] HOCHENG H,TSAO C C. The path towards delamination-free drilling of composite materials[J]. Journal of Materials Processing Technology,2005,167(2-3):251-264. [108] BANSAL N,SINGH J,LAMON J,et al. Processing and Properties of Advanced Ceramics and Composites Ⅲ[M]. New York:Wiley Blackwell,2011. [109] FENG P,WANG J,ZHANG J,et al. Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites[J]. Ceramics International,2017,43(1):791-799. [110] LI Z C,JIAO Y,DEINES T W,et al. Rotary ultrasonic machining of ceramic matrix composites:Feasibility study and designed experiments[J]. International Journal of Machine Tools and Manufacture,2005,45(12-13):1402-1411. [111] YUAN S,ZHANG C,HU J. Effects of cutting parameters on ductile material removal mode percentage in rotary ultrasonic face machining[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2015,229(9):1547-1556. [112] 唐军,赵波. 超声波椭圆振动加工技术的研究进展[J]. 金刚石与磨料磨具工程,2014(1):70-78. TANG Jun,ZHAO Bo. Development of ultrasonic elliptical vibration machining[J]. Diamond and Abrasives Engineering,2014(1):70-78. [113] ASAMI T,MIURA H. Study of hole machining of brittle material by ultrasonic complex vibration[C]//Ultrasonics Symposium (IUS),2012 IEEE International. IEEE,2012:2667-2670. [114] 皮钧,徐西鹏. 纵扭共振超声铣削研究[J]. 中国机械工程,2009(10):1163-1169. PI Jun,XU Xipeng. Research on longitudinal-tersional resonance ultrasonic milling[J]. China Mechanical Engineering,2009(10):1163-1169. [115] 冯平法,张建富,蔡万宠,等. 超磁致伸缩扭振换能器:中国,201510033753.7[P]. 2015-04-29. FENG Pingfa,ZHANG Jianfu,CAI Wanchong,et al. Magnetostrictive torsional vibration transducer:China,201510033753.7[P]. 2015-04-29. [116] 张建富,冯平法,蔡万宠,等. 超磁致伸缩旋转超声振动刀柄:中国,201510688337.0[P]. 2016-03-16. FENG Pingfa,ZHANG Jianfu,CAI Wanchong,et al. Magnetostrictive vibration tool holder of rotary ultrasonic machine:China,201510688337.0[P]. 2016-03-16. [117] 李哲,张德远,何凤涛,等. 碳纤维复合材料旋转超声椭圆振动套磨制孔技术研究[J]. 电加工与模具,2016(5):56-59. LI Zhe,ZHANG Deyuan,HE Fengtao,et al. Study on the rotary ultrasonic elliptical vibration machining of CFRP using diamond core drill[J]. Electromachining & Mould,2016(5):56-59. [118] GENG D,ZHANG D,XU Y,et al. Effect of speed ratio in edge routing of carbon fiber-reinforced plastics by rotary ultrasonic elliptical machining[J]. Journal of Reinforced Plastics and Composites. 2015. [119] 曹凤国,张勤俭. 超声加工技术[M]. 北京:化学工业出版社,2005. CAO Fengguo,ZHANG Qinjian. Ultrasocnic machining[M]. Beijing:Chemical Industry Press,2005. [120] 贾宝贤,边文凤,赵万生,等. 压电超声换能器的应用与发展[J]. 压电与声光,2005(2):131-135. JIA Baoxian,BIAN Wenfeng,ZHAO Wansheng,et al. Application and development of piezoelectric ultrasonic transducer[J]. Power & Acoustics, 2005(2):131-135 [121] HEYWANG W,LUBITZ K,WERSING W. Piezoelectricity:Evolution and future of a technology[M]. Berlin:Springer Science & Business Media,2008. [122] SEAH K,WONG Y S,LEE L C. Design of tool holders for ultrasonic machining using FEM[J]. Journal of Materials Processing Technology,1993,37(1-4):801-816. [123] SLAUGHTER J C,DAPINO M J,SMITH R C,et al. Modeling of a Terfenol-D ultrasonic transducer[C]//SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000:366-377. [124] 冯平法,蔡万宠,郁鼎文,等. 超磁致伸缩超声振子和压电超声振子振幅稳定性研究[C]//第16届全国特种加工学术会议,2015-10-31,厦门. 厦门,中国机械工程学会,2015:358-365. FENG Pingfa,CAI Wanchong,YU Dingwen,et al. Research on vibrational stability of the magnetostrictive and piezoelectric vibrators[C]//The 16th National Conference on Unconventional Machining,2015-10-31,Xiamen. Xiamen,China Mechanical Engineering Society,2015:358-365. [125] CAI W,ZHANG J,FENG P,et al. A bilateral capacitance compensation method for giant magnetostriction ultrasonic processing system[J]. The International Journal of Advanced Manufacturing Technology,2016:1-9. [126] CAI W,FENG P,ZHANG J,et al,et al. Effect of temperature on the performance of a giant magnetostrictive ultrasonic transducer.[J]. Journal of Vibroengineering. 2016,18(2):1307-1318. [127] 杨大智. 智能材料与智能系统[M]. 天津:天津大学出版社,2000. YANG Dazhi. Intelligent materials and systems[M]. Tianjin:Tianjin University Press,2000. [128] 赵勋范. 非接触电能传输系统的研究[D]. 济南:山东大学,2013. ZHAO Xunfan. Study on the contactless power transfer system[D]. Jinan:Shandong University,2013. [129] WANG C,COVIC G A,STIELAU O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2004,51(1):148-157. [130] 罗华东. 基于对称结构的超声加工电能非接触传输仿真与试验[D]. 哈尔滨:哈尔滨工业大学,2013. LUO Huadong. Simulation and experiment of contactless electric energy transmission in ultrasonic machining based on symmetrical structure. Harbin:Harbin Institute of Technology,2013. [131] 申昊. 旋转超声加工系统二级变幅杆与非接触电能传输设计方法[D]. 北京:清华大学,2016. SHEN Hao. Design methods of two-section horn and contactless power transmission for rotary ultrasonic machining system[D]. Beijing:Tsinghua University,2016. [132] ZHU X,LIN B,LIU L,et al. Power transfer performance and cutting force effects of contactless energy transfer system for rotary ultrasonic grinding[J]. IEEE Transactions on Industrial Electronics,2016,63(5):2785-2795. [133] ARNOLD F J,MÜHLEN S S. The resonance frequencies on mechanically pre-stressed ultrasonic piezotransducers[J]. Ultrasonics,2001,39(1):1-5. [134] 李战慧,吴运新,隆志力. 超声换能器接触界面的非线性谐波[J]. 振动与冲击,2010(9):138-141. LI Zhanhui,WU Yunxin,LONG Zhili. Nonlinear harmonic of ultrasound transducer interface[J]. Journal of Vibration and Shock,2010(9):138-141. [135] 王福军. 引线键合高频超声换能器的设计和键合头运动控制研究[D]. 天津:天津大学,2009. WANG Fujun. Design of high-frequency ultrasonic transducer for wire bonding and research on motion control of bond head[D]. Tianjin:Tianjin University,2009. [136] 戴向国,谷诤巍,傅水根,等. 变幅杆连接结构对超声能量传递效果的影响[J]. 清华大学学报,2004(2):160-162. DAI Xiangguo,GU Zhengwei,FU Shuigen,et al. Relation between amplified poke link structure and energy transmission[J]. Journal of Tsinghua University,2004(2):160-162. [137] 尚彦芝,蔡晓君,高钜. 变幅杆连接工艺对旋转超声加工质量影响的研究[J]. 新技术新工艺,2011(1):16-18. SHANG Yanzhi,CAI Xiaojun,GAO Ju. Research on the effects of horn connection process to the quality of rotary ultrasonic machining[J]. New Technology and New Process,2011(1):16-18. [138] WANG J,FENG P,ZHANG J,et al. Experimental investigation on the effects of thermo-mechanical loading on the vibrational stability during rotary ultrasonic machining[J]. Machining Science and Technology,2017,21(2):239-256. [139] 张承龙,冯平法,吴志军. 旋转超声加工振幅与实际切削深度特性研究[J]. 兵工学报,2013(7):883-888. ZHANG Chenglong, FENG Pingfa, WU Zhijun. Research on the Properties of Ultrasonic Vibration Amplitude and Actual Cutting Depth in Rotary Ultrasonic Machining[J]. Acta ArmamentarⅡ,2013(7):883-888. [140] CONG W L,PEI Z J,MOHANTY N,et al. Vibration amplitude in rotary ultrasonic machining:A novel measurement method and effects of process variables[J]. Journal of Manufacturing Science and Engineering,2011,133(3):034501. [141] WANG J,FENG P,ZHANG J,et al. Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining[J]. Ultrasonics,2017,74:81-88. [142] ASTASHEV V K,BABITSKY V I. Ultrasonic cutting as a nonlinear (vibro-impact) process[J]. Ultrasonics,1998,36(1):89-96. |
[1] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[2] | 江安娜, 言兰, 王宁昌, 姜峰, 李卓, 温秋玲, 卢希钊, 黄辉. 能量场辅助激光诱导等离子体加工透明硬脆材料的研究现状及发展趋势[J]. 机械工程学报, 2024, 60(9): 254-272. |
[3] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[4] | 王湃, 白翌帆, 赵文祥, 张毅博, 刘志兵. 高温合金短电弧辅助铣削表面完整性演化研究[J]. 机械工程学报, 2024, 60(9): 434-444. |
[5] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[6] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[7] | 吴吉展, 魏沛堂, 刘怀举, 吴少杰, 朱才朝. 航空齿轮钢表面完整性与滚动接触疲劳性能关联规律研究[J]. 机械工程学报, 2024, 60(4): 284-295. |
[8] | 刘怀举, 陈地发, 朱才朝, 吴吉展, 魏沛堂. 齿轮弯曲疲劳的研究进展与发展趋势[J]. 机械工程学报, 2024, 60(3): 83-108. |
[9] | 都建标, 张强, 宗文俊. 硬脆及黑色金属材料的单点金刚石车削加工技术综述[J]. 机械工程学报, 2023, 59(7): 156-175. |
[10] | 郑雷, 孙晓晗, 吕冬明, 刘子文, 朱卓志, 董香龙, 韦文东. GFRP旋转超声振动套孔加工仿真及工艺研究[J]. 机械工程学报, 2023, 59(23): 391-400. |
[11] | 刘逸航, 周力, 韩雄, 张明亮, 耿大喜, 刘连星, 尹晓明, 姜兴刚, 张德远. 波动式超声铣削方法与钛合金后处理工艺的相容性研究[J]. 机械工程学报, 2023, 59(23): 320-330. |
[12] | 刘怀举, 张博宇, 朱才朝, 魏沛堂. 齿轮接触疲劳理论研究进展[J]. 机械工程学报, 2022, 58(3): 95-120. |
[13] | 卢守相, 杨秀轩, 张建秋, 周聪, 殷景飞, 张璧. 关于硬脆材料去除机理与加工损伤的理性思考[J]. 机械工程学报, 2022, 58(15): 31-45. |
[14] | 刘佳佳, 姜兴刚, 高泽, 张明亮, 张德远. 高速旋转超声椭圆振动侧铣削振幅对钛合金表面完整性影响的研究[J]. 机械工程学报, 2019, 55(11): 215-223. |
[15] | 姚鹏, 王伟, 黄传真, 朱洪涛. 石英玻璃的单颗磨粒划擦应力场解析模型及损伤可控磨削机理研究[J]. 机械工程学报, 2018, 54(21): 191-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||