• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 296-308.doi: 10.3901/JME.2024.24.296

• 运载工程 • 上一篇    下一篇

扫码分享

基于GRNN-GSA-ELM的在线锂离子电池RUL多步预测

蔡艳平, 王新军, 姜柯, 韩德帅, 赵沁峰   

  1. 火箭军工程大学 西安 710025
  • 收稿日期:2024-02-10 修回日期:2024-10-28 出版日期:2024-12-20 发布日期:2025-02-01
  • 作者简介:蔡艳平(通信作者),男,1982年出生,博士,教授。主要研究方向为复杂系统智能诊断与监测系统。E-mail:2676802970@qq.com;王新军,男,1974年出生,硕士,副教授。主要研究方向为复杂系统智能诊断与监测系统。E-mail:190432895@qq.com;赵沁峰,男,1997年出生。主要研究方向为锂离子电池健康状态监测。E-mail:13026478057@163.com
  • 基金资助:
    国家自然科学基金(52272406, U2268211)、四川省科技计划(2024YFHZ0032)和轨道交通运载系统全国重点实验室自主课题 (2024RVL-T13)资助项目。

Multi-step Prediction of Online Lithium Battery Remaining Useful Life Based on GRNN-GSA-ELM

CAI Yanping, WANG Xinjun, JIANG Ke, HAN Deshuai, ZHAO Qinfeng   

  1. Rocket Force University of Engineering, Xi'an 710025
  • Received:2024-02-10 Revised:2024-10-28 Online:2024-12-20 Published:2025-02-01

摘要: 考虑到锂离子电池剩余寿命在线预测能力不足,以及基于极限学习机网络模型对小样本训练数据学习能力不强的问题,提出构建连续的健康因子的方法,使用广义回归神经网络与改进极限学习机(Extreme learning machine,ELM)融合的方法对锂电池剩余寿命进行多步预测。首先,提取锂电池等压降放电时间作为健康因子,利用插值补充的方法将离散的电池运行参数重构为连续的健康因子,然后,使用广义回归神经网络对锂离子电池早期剩余寿命进行预测,引入引力搜索算法对极限学习机进行优化,建立具有实时更新能力的锂离子电池中后期剩余寿命预测(Remaining useful life,RUL)多步预测模型,最后,基于马里兰高级生命周期工程中心的CS2-35~CS2-38号以及CS2-7号电池数据对模型进行验证。试验结果表明,基于广义回归神经网络与引力搜索算法优化极限学习机融合的锂电池在线RUL多步预测模型具有较高的预测精度,与其他模型相比鲁棒性与适用性较好。

关键词: 等压降放电时间, 广义回归神经网络, 引力搜索算法, 极限学习机, 多步预测

Abstract: Considering the problems of insufficient online prediction capability of the residual life of Li-ion batteries and the poor learning capability of the extreme learning machine based network model for small sample training data, a method of constructing continuous health factors is proposed to perform multi-step prediction of the residual life of Li-ion batteries using generalized regression neural network fused with an improved ELM. Firstly, the iso-voltage drop discharge time of Li-ion batteries is extracted as the health factor, and the discrete battery operating parameters are reconstructed into continuous health factors using the interpolation complementary method. Then, the generalized regression neural network is used to predict the early remaining life of Li-ion batteries, and the gravitational search algorithm is introduced to optimize the limit learning machine to build a mid-late RUL multi-step Li-ion battery multi-step with real-time update capability Finally, the model is validated based on the data of CS2-35~CS2-38 and CS2-7 batteries from the Maryland advanced life cycle engineering center. The experimental results show that the online RUL multi-step prediction model for Li-ion batteries based on the fusion of GRNN and GSA-ELM has high prediction accuracy and better robustness and applicability compared with other models.

Key words: equal voltage discharging time, general regression neural network, gravity search algorithm, extreme learning machine, multi-step online prediction

中图分类号: