• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (21): 56-65.doi: 10.3901/JME.2024.21.056

• 机器人及机构学 • 上一篇    下一篇

扫码分享

磁流变软体机器人滚动-变形运动特性

华德正, 申玉瑞, 彭来, 王其雨, 刘新华   

  1. 中国矿业大学机电工程学院 徐州 221116
  • 收稿日期:2023-11-08 修回日期:2024-04-12 发布日期:2024-12-24
  • 通讯作者: 刘新华,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为机器人技术、磁流变液传动、智能制造等。E-mail:liuxinhua@cumt.edu.cn
  • 作者简介:华德正,男,1993年出生,博士。主要研究方向为磁控软体机器人、胶囊机器人。E-mail:hua_dezheng@cumt.edu.cn
  • 基金资助:
    河北省社会科学基金资助项目(HB24YS005)。

Rolling-deformation Motion Characteristics of Magnetorheological Soft Robot

HUA Dezheng, SHEN Yurui, PENG Lai, WANG Qiyu, LIU Xinhua   

  1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116
  • Received:2023-11-08 Revised:2024-04-12 Published:2024-12-24

摘要: 为实现软体机器人的无缆化驱动,同时避免多自由度磁控结构的相互干扰,设计一种基于磁流变液的磁控软体机器人。利用磁流变液毫秒级磁化和无磁矫顽力的特性,设计磁流变液中磁性粒子链在梯度磁场下的动态驱动方式,实现磁控结构的可重构磁化功能。首先介绍磁流变软体机器人的结构模型和制作流程,建立软体机器人滚动-变形运动模式。分析磁流变软体机器人在磁场和应力场作用下的动力学关系,建立不同运动阶段的力学平衡方程。利用COMSOL有限元仿真软件对磁流变软体机器人的单步运动状态进行研究,验证多物理场下滚动-变形运动模式的可行性。最后搭建基于机械臂-永磁体的磁场控制实验平台,开展磁流变软体机器人单步运动、连续运动、越障运动、坡面运动、直行-转向运动的实验测试。实验测试结果表明:磁流变软体机器人能够在平面内任意方向实现稳定、连续运动,且内部磁控结构相互之间无磁场干扰,为磁控软体机器人的结构设计和驱动方法提供了新思路。

关键词: 磁流变液, 软体机器人, 无缆化驱动, 滚动-变形运动, 磁场控制

Abstract: In order to realize the cable-free drive of soft robot and avoid the mutual interference of multi-degree-of-freedom magnetic structure, a magnetically driven soft robot is proposed based on magnetorheological fluid. In terms of millisecond magnetization and non-coercivity of magnetorheological fluid, a dynamic driving mode of magnetic particle chains under gradient magnetic field is designed to realize the reconfigurable magnetization function of driven structures. Firstly, the structure model and production process of the magnetorheological soft robot are stated, and a rolling-deformation motion mode of the soft robot is established. The mechanical equilibrium equations for different motion stages are established by analyzing the dynamic relationship of the soft robot under magnetic field and stress field. The COMSOL finite element software is used to simulate the single-step motion state of the magnetorheological soft robot, and the feasibility of the rolling-deformation motion mode is verified under multiple physical fields. Finally, a magnetic field control experimental platform with robotic arm-permanent magnet is built to carry out the experimental tests of single-step, continuous, obstacle crossing, slope and straight-turn. The results show that the proposed soft robot can realize stable and continuous motion in any direction in the plane, and avoiding magnetic interference between internal structures, which provides new ideas for the structural design and driving method of magnetic soft robot.

Key words: magnetorheological fluid, soft robot, cable-free drive, rolling-deformation motion, magnetic field control

中图分类号: