[1] 仝令胜,石博强,申焱华,等. 基于FORM的齿轮传动多学科优化设计[J]. 机械工程学报,2010,46(3):42-46. TONG Lingsheng,SHI Boqiang,SHEN Yanhua,et al. First-order reliability method based multidisciplinary design optimization on gear transmission[J]. Journal of Mechanical Engineering,2010,46(3):42-46. [2] KIUREGHIAN A,LIN H Z,HWANG S J. Second-order reliability approximations[J]. Journal of Engineering Mechanics,1987,113(8):1208-1225. [3] QIN Q,LIN D,MEI G,et al. Effects of variable transformations on errors in FORM results[J]. Reliability Engineering & System Safety,2006,91(1):112-118. [4] RUBINSTEIN R Y,KROESE D P. Simulation and the Monte Carlo method[M]. New York:John Wiley & Sons,Inc,2016. [5] AU S K,BECK J L. A new adaptive importance sampling scheme for reliability calculations[J]. Structural Safety,1999,21(2):135-158. [6] KURTZ N,SONG J. Cross-entropy-based adaptive importance sampling using Gaussian mixture[J]. Structural Safety,2013,42:35-44. [7] AU S K,BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,16(4):263-277. [8] PRADLWARTER H,SCHUELLER G,KOUTSOURELAKIS P,et al. Application of line sampling simulation method to reliability benchmark problems[J]. Structural Safety,2007,29(3):208-221. [9] KIM S H,NA S W. Response surface method using vector projected sampling points[J]. Structural Safety,1997,19(1):3-19. [10] DAS P K,ZHENG Y. Cumulative formation of response surface and its use in reliability analysis[J]. Probabilistic Engineering Mechanics,2000,15(4):309-315. [11] PAPADRAKAKIS M,LAGAROS N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(32):3491-3507. [12] 杨多和,安伟光,李铁钧. 基于人工神经网络的结构可靠性分析[J]. 兵工学报,2007(4):495-498. YANG Duohe,AN Weiguang,LI Tiejun. Structural reliability analysis based on artificial neural network[J]. Journal of Ordnance,2007(4):495-498. [13] BOURINET J M,DEHEEGER F,LEMAIRE M. Assessing small failure probabilities by combined subset simulation and support vector machines[J]. Structural Safety,2011,33(6):343-353. [14] 李洪双,吕震宙,岳珠峰. 结构可靠性分析的支持向量机方法[J]. 应用数学和力学,2006(10):1135-1143. LI Hongshuang,LÜ Zhenzhou,YUE Zhufeng. Support vector machine method for structural reliability analysis[J]. Applied Mathematics and Mechanics,2006(10):1135-1143. [15] 张文鑫,吕震宙. 一种新的自适应Kriging法停止准则及其在涡轮盘疲劳寿命可靠性中的应用[J]. 机械工程学报,2022,58(6):263-273. ZHANG Wenxin,LÜ Zhenzhou. New stopping criterion of adaptive kriging method and its application in fatigue life reliability for turbine disk[J]. Journal of Mechanical Engineering,2022,58(6):263-273. [16] 陈哲,杨旭锋,程鑫. 基于改进Kriging模型的主动学习可靠性分析方法[J]. 机械强度,2021,43(1):129-136. CHEN Zhe,YANG Xufeng,CHENG Xin. Active learning reliability analysis method based on improved Kriging model[J]. Mechanical Strength,2021,43(1):129-136. [17] BICHON B J,ELDRED M S,SWILER L P,et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal,2008,46(10):2459-2468. [18] ECHARD B,GAYTON N,LEMAIRE M. AK-MCS:An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety,2011,33(2):145-154. [19] ECHARD B,GAYTON N,LEMAIRE M,et al. A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering & System Safety,2013,111:232-240. [20] CADINI F,SANTOS F,ZIO E. An improved adaptive Kriging-based importance technique for sampling multiple failure regions of low probability[J]. Reliability Engineering & System Safety,2014,131:109-117. [21] YANG X,LIU Y,MI C,et al. Active learning Kriging model combining with kernel-density-estimation-based importance sampling method for the estimation of low failure probability[J]. Journal of Mechanical Design,2018,140(5). [22] YANG X,CHENG X. Active learning method combining Kriging model and multimodal-optimization-based importance sampling for the estimation of small failure probability[J]. International Journal for Numerical Methods in Engineering,2020,121(21):4843-4864. [23] PAPAIOANNOU I,GEYER S,STRAUB D. Improved cross entropy-based importance sampling with a flexible mixture model[J]. Reliability Engineering & System Safety,2019,191:106564. [24] RUBINSTEIN R Y,KROESE D P. The cross-entropy method:A unified approach to combinatorial optimization,Monte-Carlo simulation,and machine learning[M]. Berlin:Springer,2004. [25] WANG Z,SONG J. Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis[J]. Structural Safety,2016,59:42-52. [26] WANG Z,SHAFIEEZADEH A. ESC:An efficient error-based stopping criterion for Kriging-based reliability analysis methods[J]. Structural and Multidisciplinary Optimization,2019,59:1621-1637. [27] YANG X,LIU Z,CHENG X. An enhanced active learning Kriging model for evidence theory-based reliability analysis[J]. Structural and Multidisciplinary Optimization,2021,64:2165-2181. [28] FISCHER H. A history of the central limit theorem:From classical to modern probability theory[M]. Berlin:Springer,2011. [29] WEN Z,PEI H,LIU H,et al. A sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability[J]. Reliability Engineering & System Safety,2016,153:170-179. |