机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 350-373.doi: 10.3901/JME.2024.07.350
丁文锋1, 赵俊帅1, 张洪港2, 赵彪1, 司文元3, 宋强3, 黄庆飞3
收稿日期:
2023-05-31
修回日期:
2023-09-12
出版日期:
2024-04-05
发布日期:
2024-06-07
通讯作者:
赵彪,男,1991年出生,博士,副研究员,硕士研究生导师。主要从事难加工材料高效精密磨削技术与应用研究。E-mail:zhaobiao@nuaa.edu.cn
作者简介:
丁文锋,男,1978年出生,博士,教授,博士研究生导师。主要从事航空航天难加工材料高效精密加工技术研究。E-mail:dingwf2000@vip.163.com;赵俊帅,男,1992年出生,博士研究生。主要从事超高强度齿轮超声振动辅助高效精密磨削加工技术研究。E-mail:jszhao@nuaa.edu.cn
基金资助:
DING Wenfeng1, ZHAO Junshuai1, ZHANG Honggang2, ZHAO Biao1, SI Wenyuan3, SONG Qiang3, HUANG Qingfei3
Received:
2023-05-31
Revised:
2023-09-12
Online:
2024-04-05
Published:
2024-06-07
摘要: 随着航空等高端装备工业的发展,传动齿轮高效率、高精度、高可靠性的需求日益增加。磨削加工技术是齿轮精密成形加工的重要工序,对齿轮的表面质量和服役寿命有着重要影响。由于齿轮的齿面结构复杂,淬硬表面材料难加工,齿轮磨削过程中存在磨削力大、磨削温度高、磨削表面质量难以控制等问题,因此,国内外针对齿轮磨削加工技术开展了大量深入、系统研究并运用于实际生产中。在概述齿轮磨削加工研究发展现状的基础上,总结了国内外学者在齿轮高效加工、精密加工、磨削表面完整性创成机制等方面的主要研究成果。最后,对齿轮高效精密磨削加工技术的发展趋势进行了总结和展望,旨在为高性能齿轮制造提供理论和技术指导。
中图分类号:
丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373.
DING Wenfeng, ZHAO Junshuai, ZHANG Honggang, ZHAO Biao, SI Wenyuan, SONG Qiang, HUANG Qingfei. Advances in High Efficiency Precision Grinding and Surface Integrity Control Technology for Gears[J]. Journal of Mechanical Engineering, 2024, 60(7): 350-373.
[1] MAYER J E, PRICE A H,PURUSHOTHAMAN G K,et al. Specific grinding energy causing thermal damage in helicopter gear steel[J]. Journal of Manufacturing Processes,2002,4(2):142-147. [2] 谭建军,朱才朝,李浩,等. 基础运动对漂浮式风电机组齿轮箱传动系统附加激励的影响[J]. 机械工程学报,2023,59(1):35-49. TAN Jianjun,ZHU Chaocai,LI Hao,et al. Influences of base motions on additional excitations of floating wind turbine gearbox transmission system[J]. Journal of Mechanical Engineering,2023,59(1):35-49. [3] 周如传,赵宁,李旺,等. 锥形面齿轮副的几何展成及轮齿接触分析[J].机械工程学报,2020,56(7):86-95. ZHOU Ruchuan,ZHAO Ning,LI Wang,et al. Generation,TCA and stress analysis of the face gear drive with a tapered involute pinion[J]. Journal of Mechanical Engineering,2020,56(7):86-95. [4] YANG Y,WU Y,LI Y,et al. Effects of tooth modification in the involute helical gear form-grinding process on loaded transmission character with consideration of tooth axial inclination error[J]. Machines,2023,11(2):305. [5] RIABCHENKO S,KRIVOSHEJA A,BURYKIN V,et al. Gear grinding by super hard materials wheels[J]. Advanced Manufacturing Process,2020,273-280. [6] 赵韩,吴其林,黄康,等. 国内齿轮研究现状及问题研究[J]. 机械工程学报,2013,49(19):11-20. ZHAO Han,WU Qilin,HUANG Kang,et al. Status and problem research on gear study[J]. Journal of Mechanical Engineering,2013,49(19):11-20. [7] 刘怀举,张博宇,朱才朝,等. 齿轮接触疲劳理论研究进展[J]. 机械工程学报,2022,58(3):95-120. LIU Huaiju,ZHANG Boyu,ZHU Chaocai,et al. State of art of gear contact fatigue theories[J]. Journal of Mechanical Engineering,2022,58(3):95-120. [8] GHOSH S,CHATTOPADHYAY A,PAUL S. Modelling of specific energy requirement during high-efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture,2008,48(11):1242-1253. [9] MATHEW N T,VIJAYARAGHAVAN L. Wear of silicon carbide wheel during grinding of intermetallic titanium aluminide[J]. International Journal of Machining and Machinability of Materials,2020,22(2):122-136. [10] 黄水泉,高尚,黄传真,等. 脆性材料磨粒加工的纳米尺度去除机理[J]. 金刚石与磨料磨具工程,2022,42(3):257-267. HUANG Shuiquan,GAO Shang,HUANG Chuanzhen,et al. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond and Abrasives Engineering,2022,42(3):257-267. [11] ASLAN D,BUDAK E. Semi-analytical force model for grinding operations[C]//6th CIRP International Conference on High Performance Cutting,Berkeley,CA,2014,14(14):7-12. [12] LIU X,WANG S,YUE C,et al. Numerical calculation of grinding wheel wear for spiral groove grinding[J]. International Journal of Advanced Manufacturing Technology,2022,120(5-6):3393-3404. [13] CHEN H,TANG J,ZHOU W. Modeling and predicting of surface roughness for generating grinding gear[J]. Journal of Materials Processing Technology,2013,213(5):717-721. [14] BOTTGER J,KIMME S,DROSSEL W G. Simulation of dressing process for continuous generating gear grinding[C]//12th CIRP Conference on Intelligent Computation in Manufacturing Engineering,Italy,2019,79:280-285. [15] OPHEY M,LÖPENHAUS C,KLOCKE F. Influence of tool specification and machining parameters on the wear behaviour at generating gear grinding[J]. Applied Mechanics and Materials,2015,794:231-238. [16] MA XF,CAI ZQ,YAO B,et al. Prediction model for surface generation mechanism and roughness in face gear grinding[J]. International Journal of Advanced Manufacturing Technology,2022,120(7-8):4423-4442. [17] 别文博,赵波,高国富,等. 切向超声振动辅助成形磨削齿轮的切削系数建模与试验研究[J]. 机械工程学报,2022,58(7):295-308. BIE Wenbo,ZHAO Bo,GAO Guofu,et al. Analytical modeling and experimental investigation on cutting coefficient during tangential ultrasonic vibration-assisted forming grinding gear[J]. Journal of Mechanical Engineering,2022,58(7):295-308. [18] MALEC J,CERVUNKA F,BLAZICEK D,et al. The attempt of new approach to evaluate surface integrity[J]. Defect and Diffusion Forum,2016,368:15-19. [19] WEI J,PAN Z,LIN X,et al. Copula-function-based analysis model and dynamic reliability of a gear transmission system considering failure correlations[J]. Fatigue and Fracture of Engineering Materials and Structures,2019,42(1):114-128. [20] SYZRANTSEVA K V. Development of a method to calculate the strength reliability of tooth gears based on the fatigue resistance when the teeth bend[J]. Journal of Machinery Manufacture and Reliability,2009,38(6):552-556. [21] 高玉魁,赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理,2014,39(4):1-6. GAO Yukui,ZHAO Zhenye. Development trend of surface integrity and anti-fatigue manufacture of gears[J]. Heat Treatment of Metals,2014,39(4):1-6. [22] ZHANG J,SHAW B. The effect of superfinishing on the contact fatigue of case carburised gears[J]. Applied Mechanics and Materials,2011,86:348-351. [23] NAMBOOTHIRI N,MARIMUTHU P. Fracture characteristics of asymmetric high contact ratio spur gear based on strain energy release rate[J]. Engineering Failure Analysis,2022,134:106038. [24] 刘永平,吴序堂,李鹤岐. 数控锥面砂轮磨齿机磨削椭圆齿轮[J]. 机械工程学报,2006,12:70-75. LIU Yongping,WU Xutang,LI Heqi. Grinding of elliptical gears with CNC conical wheel gear grinding machine[J]. Journal of Mechanical Engineering,2006,12:70-75. [25] 凌四营,王立鼎,李克洪,等. 基于1级精度基准标准齿轮的超精密磨齿工艺[J]. 光学精密工程,2011,19(7):1596-1604. LING Siying,WANG Liding,LI Kehong,et al. Ultra-precision gear-grinding processing based on class 1 master gear[J] Optical Precision Engineering,2011,19(7):1596-1604. [26] WANG C S,YAO P,WANG J,et al. Study on the simplification of spiral bevel gear grinding model[J]. Materials Science Forum,2016,861:108-114. [27] 吴其林,赵韩,邱明明,等. 微线段齿轮磨削加工方法及性能分析[J]. 机械工程学报,2017,53(13):179-187. WU Qilin,ZHAO Han,QIU Mingming,et al. Grinding method and performance analysis of micro-segment gears[J]. Journal of Mechanical Engineering,2017,53(13):179-187. [28] ONISHI T,MURATA Y,FUJIWARA K,et al. Accurate estimation of workpiece dimension in plunge grinding without sizing gauge[J]. Precision Engineering,2020,74; 441-446. [29] MA X,CAI Z,YAO B,et al. Dynamic grinding force model for face gear based on the wheel-gear contact geometry[J]. Journal of Materials Processing Technology,2022,306:117633. [30] CAI S,CAI Z,YAO B,et al. Face gear generating grinding residual model based on the normal cutting depth iterative method[J]. International Journal of Advanced Manufacturing Technology,2023,126(1-2):355-369. [31] OPHEY M,KLOCKE F,LOPENHAUS C. Approach for modeling grinding worm wear in generating gear grinding[J]. Forsch Ingenieurwes,2017,81(2-3):307-316. [32] REICHSTEIN M,CATONI F,PROF. CRONJÄGER. Grinding of gears with vitreous bonded CBN-worms[J]. CIRP Annals-Manufacturing Technology,2006,55(1):355-358. [33] YU B,KOU H,ZHAO B,et al. Approximation model for longitudinal-crowned involute helical gears with flank twist in continuous generating grinding[J]. International Journal of Advanced Manufacturing Technology,2021,114(9):3675-3694. [34] CAO B,LI G L,FORTUNATO A,et al. Continuous generating grinding method for beveloid gears and analysis of grinding characteristics[J]. Advances in Manufacturing,2022,10(3):459-478. [35] WANG Y Z,CHEN Y Y,ZHOU G M,et al. Roughness model for tooth surfaces of spiral bevel gears under grinding[J]. Mechanism and Machine Theory,2016,104:17-30. [36] 丁国龙,张颂,赵大兴,等. 基于诱导法曲率的齿轮成形磨削干涉分析[J]. 机械工程学报,2016,52(3):197-204. DING Guolong,ZHANG Song,ZHAO Daxing,et al. Interference study of gear form grinding based on induced normal curvature[J]. Journal of Mechanical Engineering,2016,52(3):197-204. [37] 李彦,汪中厚,刘雷,等. 成形法双面磨削拓扑修形误差齿面对齿轮传动的影响[J]. 中国机械工程,2022,33(14):1661-1669. LI Yan,WANG Zhonghou,LIU Lei,et al. Effects of tooth surfaces of topographic profile errors in double-sided grinding on gear transmission by forming method[J]. Journal of Mechanical Engineering,2022,33(14):1661-1669. [38] 王龙,汪刘应,唐修检,等. 成形法磨削齿轮的磨削温度模型构建与分析[J]. 机械工程学报,2022,58(3):295-304. WANG Long,WANG Liuying,TANG Xiujian,et al. Construction and analysis of grinding temperature model for gear processed by form grinding technology[J]. Journal of Mechanical Engineering,2022,58(3):295-304. [39] KRUSZYŃSKI B,LUTTERVELT C. Prediction of temperature and surface integrity in gear grinding[J]. International journal of machine tools and manufacture,1994,34(5):633-640. [40] LISHCHENKO N V,LARSHIN V P. Gear-grinding temperature modeling and simulation[C]//Proceedings of the 5th International Conference on Industrial Engineering. Springer,Cham,2019:289-297. [41] LISHCHENKO N V,LARSHIN V P. Profile gear grinding temperature determination[C]//Proceedings of the 4th International Conference on Industrial Engineering. Springer,Cham,2018:1723-1730. [42] YI J,JIN T,ZHOU W,et al. Theoretical and experimental analysis of temperature distribution during full tooth groove form grinding[J]. Journal of Manufacturing Processes,2020,58:101-115. [43] YI J,JIN T,DENG Z,et al. Estimation of residual stresses in gear form grinding using finite element analysis and experimental study based on grinding force and heat flux distribution models[J]. International Journal of Advanced Manufacturing Technology,2019,104(1):849-866. [44] XIAO Y,WANG S,MA C,et al. Measurement and modeling methods of grinding-induced residual stress distribution of gear tooth flank[J]. International Journal of Advanced Manufacturing Technology,2021,115(11):3933-3944. [45] XIAO Y,MA C,WANG S,et al. Numerical modeling of material removal mechanism and surface topography for gear profile grinding[J]. Journal of manufacturing processes,2022,76:719-739. [46] GUO H,WANG X,ZHAO N,et al. Simulation analysis and experiment of instantaneous temperature field for grinding face gear with a grinding worm[J]. International Journal of Advanced Manufacturing Technology,2022,120(7):4989-5001. [47] SU J,ZHANG H,JIANG C,et al. Prediction and experimental study on thermal stress in multi-tooth form grinding of cycloid gear[J]. International Journal of Advanced Manufacturing Technology,2021,117(1):187-198. [48] WANG Y,ZHANG W,LIU Y. Analysis model for surface residual stress distribution of spiral bevel gear by generating grinding[J]. Mechanism and Machine Theory,2018,130:477-490. [49] 赵恒华,宋涛,蔡光起. 磨削加工技术的发展趋势[J]. 制造技术与机床,2012,594(1):55-58. ZHAO Henghua,SONG Tao,CAI Guangqi. The development trends of grinding process technology[J]. Manufacturing Technology and Machine Tool,2012,594(1):55-58. [50] 蔡光起,赵恒华,高兴军. 高速高效磨削加工及其关键技术[J]. 制造技术与机床,2004(11):42-45. CAI Gangqi,ZHAO Henghua,GAO Xingjun. High speed and efficient grinding and its key technologies[J]. Manufacturing Technology and Machine Tool,2004(11):42-45. [51] 王楚琦,寇自力. 纯相PcBN的高温高压制备综述[J]. 金刚石与磨料磨具工程,2022,42(2):162-168. WANG Chuqi,KOU Zili. A review of preparing binderless PcBN at high temperature and high pressure[J]. Diamond and Abrasives Engineering,2022,42(2):162-168. [52] TANG J,FENG Y,CHEN X M. The principle of profile modified face-gear grinding based on disk wheel[J]. Mechanism and Machine Theory,2013,70:1-15. [53] EMURA T,WANG L,ARAKAWA A. A study on a high-speed NC gear grinding machine using a screw-shaped CBN wheel[J]. Asme Journal of Mechanical Design,1994,116(4):1163-1168. [54] FAN K,GAO R,ZHOU H,et al. An optimization method for thermal behavior of high-speed spindle of gear form grinding machine[J]. The International Journal of Advanced Manufacturing Technology,2020,107(4):959-970. [55] 陈鑫,王栋,刘昱范. 高速磨削对18CrNiMo7-6表面完整性的影响研究[J]. 表面技术,2018,47(9):259-265. CHEN Xin,WANG Dong,LIU Yufan. Influence of high speed grinding on surface integrity of 18CrNiMo7-6[J]. Surface Technology,2018,47(9):259-265. [56] EMURA T,WANG L,YAMANAKA M,et al. A PC-based synchronous controller for NC gear grinding machines using multithread CBN wheel[J]. Journal of Mechanical Design,2001,123(4):590-597. [57] 赵恒华,冯宝富,高贯斌,等. 超高速磨削技术在机械制造领域中的应用[J]. 东北大学学报,2003,24(6):564-568. ZHAO Henghua,FENG Baofu,GAO Guanbin,et al. Application of ultra-high speed grinding technologies in the field of mechanical manufacturing[J]. Journal of Northeast University,2003,24(6):564-568. [58] 杨洪波,赵恒华,刘伟锐. 磨削技术的现状和未来发展趋势[J]. 机械制造与自动化,2014,43(6):7-9. YANG Hongbo,ZHAO Henghua,LIU Weirui. Present situation and future development trend of grinding technology[J]. Machine Building and Automation,2014,43(6):7-9. [59] XU L,WU Q,HUANG Y,et al. Effect of high speed grinding on surface integrity of cycloid gear[C]//2021 IEEE 11th Annual International Conference on CYBER Technology in Automation,Control,and Intelligent Systems (CYBER),2021,711-716. [60] 王建宇,黄国钦. 金刚石磨粒工具增材制造技术现状及展望[J]. 金刚石与磨料磨具工程,2022,42(3):307-316. WANG. Jianyu,HUANG Guoqin. Review on manufacturing diamond abrasive tools by additive manufacturing technology[J]. Diamond and Abrasives Engineering,2022,42(3):307-316. [61] 方其先,黄明志. CBN砂轮对渗碳齿轮磨削质量的影响[J]. 金刚石与磨料磨具工程,1992,22(5):13-17. FANG Qixian,HUANG Mingzhi. The effect of CBN grinding wheel on the grinding quality of carburized gears[J]. Diamond and Abrasive Engineering,1992,22(5):13-17. [62] INOUE K,SONODA H,DENG G,et al. Effect of CBN grinding on the bending strength of carburized gears[J]. Journal of Mechanical Design,1998,120(4):606-611. [63] YOU H,YE P,WANG J,et al. Design and application of CBN shape grinding wheel for gears[J]. International Journal of Machine Tools & Manufacture,2003,43(12):1269-1277. [64] WANG Y,LAN Z,HOU L,et al. A precision generating grinding method for face gear using CBN wheel[J]. International Journal of Advanced Manufacturing Technology,2015,79(9-12):1839-1848. [65] CHU X,WANG Y,DU S,et al. An efficient generation grinding method for spur face gear along contact trace using disk CBN wheel[J]. International Journal of Advanced Manufacturing Technology,2020,110(5-6):1179-1187. [66] BADGER J,TORRANCE A. A comparison of two models to predict grinding forces from wheel surface topography[J]. International Journal of Machine Tools and Manufacture,2000,40(8):1099-1120. [67] CHANG H C,WANG J. A stochastic grinding force model considering random grit distribution[J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1335-1344. [68] 吕长飞,李郝林. 外圆纵向磨削力和磨削功率模型研究[J]. 现代制造工程,2011,375(12):72-75. LÜ Changfei,LI Haolin. The study of external cylindrical grinding force and power model[J] Modern Manufacturing Engineering,2011,375(12):72-75. [69] XU W,LI C,ZHANG Y,et al. Electrostatic atomization minimum quantity lubrication machining:From mechanism to application[J]. International Journal of Extreme Manufacturing,2022,4(4):43. [70] KLOCKE F,BRUMM M,REIMANN J. Development and validation of a cutting force model for generating gear grinding[J]. Forschung im Ingenieurwesen,2013,77(3-4):81-94. [71] WANG L,TIAN X,LIU Q,et al. Experimental study and theoretical analysis of the form grinding of gears using new type micro-crystal corundum grinding wheels[J]. International Journal of Advanced Manufacturing Technology,2017,92(5-8),1659-1669. [72] 王晓铭,李长河,张彦彬,等. 微量润滑赋能雾化与供给系统关键技术研究进展[J]. 表面技术,2022,51(9):1-14. WANG Xiaoming,LI Changhe,ZHANG Yanbin,et al. Research progress on key technology of enabled atomization and supply system of minimum quantity lubrication[J]. Surface Technology,2022,51(9):1-14. [73] 施壮,郭树明,刘红军,等. 生物润滑剂微量润滑磨削GH4169镍基合金性能实验评价[J]. 表面技术,2021,50(12):71-84. SHI Zhuang,GUO Shuming,LIU Hongjun,et al. Experimental evaluation of minimum quantity lubrication of biological lubricant on grinding properties of GH4169 nickel-base alloy[J]. Surface Technology,2021,50(12):71-84. [74] 贾东洲,李长河,张彦彬,等. 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报,2022,58(5):198-211. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering,2022,58(5):198-211. [75] 许文昊,李长河,张彦彬,等. 静电雾化微量润滑研究进展与应用[J]. 机械工程学报,2023,59(7):110-138. XU Wenhao,LI Changhe,ZHANG Yanbin,et al. Research progress and application of electrostatic atomization minimum quantity lubrication[J]. Journal of Mechanical Engineering,2023,59(7):110-138. [76] 吴喜峰,许文昊,马浩,等. 静电雾化机理及微量润滑铣削7075铝合金表面质量评价[J]. 表面技术,2023,52(6):337-350. WU Xifeng,XU Wenhao,MA Hao,et al. Mechanism and evaluation of surface quality of electrostatic minimum quantity lubrication milling 7075 aluminum alloy[J]. Surface Technology,2023,52(6):337-350. [77] 贾东洲,张乃庆,刘波,等. 静电雾化微量润滑粒径分布特性与磨削表面质量评价[J]. 金刚石与磨料磨具工程,2021,41(3):89-95. JIA Dongzhou,ZHANG Naiqing,LIU Bo,et al. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation[J]. Diamond and Abrasives Engineering,2021,41(3):89-95. [78] BOGDAN W. KRUSZYŃSKI,MIDERA S,KACZMAREK J. Forces in generating gear grinding-theoretical and experimental approach[J]. CIRP Annals-Manufacturing Technology,1998,47(1):287-290. [79] 唐进元,杜晋,陈勇平. 齿轮磨削中磨削力数学模型的研究[J]. 制造技术与机床,2008(1):73-76. TANG Jinyuan,DU Jin,CHEN Yongping. Research on the mathematical model of grinding force in gear grinding[J] Manufacturing Technology and Machine Tool,2008(1):73-76. [80] BRECHER C,BRUMM M,HÜBNER F. Approach for the calculation of cutting forces in generating gear grinding[C]//9th CIRP Conference on Intelligent Computation In Manufacturing Engineering,2015,33:287-292. [81] 朱鹏飞,任小中. 成形法磨齿加工中切向磨削力的试验研究[J]. 金刚石与磨料磨具工程,2013,33(4):74-77. ZHU Pengfei,REN Xiaozhong. Experimental research on tangential grinding force of gear from grinding[J] Diamond and Abrasives Engineering,2013,33(4):74-77. [82] BERGS T. Cutting force model for gear honing[J]. CIRP Annals-Manufacturing Technology,2018,67(1):53-56. [83] 蔡卫星,周伟华,张峰. 21NiCrMo5H齿轮钢超声磨削力建模研究[J]. 现代制造工程,2020,475(4):113-118. CAI Weixing,ZHOU Weihua,ZHANG Feng. Research on the grinding force model of ultrasonic grinding for 21NiCrMo5H[J]. Modern Manufacturing Engineering,2020,475(4):113-118. [84] YIN L,ZHAO B,HUO B,et al. Analytical modeling of grinding force and experimental study on ultrasonic-assisted forming grinding gear[J]. International Journal of Advanced Manufacturing Technology,2021,114(11-12):3657-3673. [85] YANG,S Y,LIANG R J,CHEN W F,et al. Modelling and experiment for grinding forces of gear form grinding considering complete tooth depth engagement[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2022,236(13):1738-1750. [86] THANEDAR A,DONGRE G,JOSHI S. Analytical modelling of temperature in cylindrical grinding to predict grinding burns[J]. International Journal of Precision Engineering and Manufacturing,2019,20(1):13-25. [87] 余晟,温俊,唐进元. 直齿轮成形磨削齿面残余应力计算与实验验证[J]. 机械传动,2020,44(5):73-77. YU Sheng,WEN Jun,TANG Jinyuan. Calculation and experimental verification of residual stress of tooth surface in spur gear form grinding[J] Journal of Mechanical Transmission,2020,44(5):73-77. [88] 王延忠,刘旸,王段,等. 基于烧伤控制的18CrNi4A材料齿轮磨削工艺研究[J]. 北京理工大学学报,2018,38(3):235-240. WANG Yanzhong,LIU Yang,WANG Duan,et al. Research on gear gridding process of material 18CrNi4A based on burn control[J]. Transactions of Beijing Institute of Technology,2018,38(3):235-240. [89] 李岩. 基于Gr10CrNi3Mo材料航空齿轮磨削烧伤的有限元分析与烧伤预测研究[J]. 中国科技信息,2019,609(14):40-43. LI Yan. Finite element analysis and burn prediction of aviation gear grinding based on Gr10CrNi3Mo material[J] China Science and Technology Information,2019,609(14):40-43. [90] BOGDAN W,KRUSZIŃSKI,NAWARA L. Model of gear-grinding process[J]. CIRP Annals-Manufacturing Technology,1995,44(1):321-324. [91] MAYER J E,PURUSHOTHAMAN G,GOPALAKRISHNAN S. Model of grinding thermal damage for precision gear materials[J]. CIRP Annals- Manufacturing Technology,1999,48(1):251-254. [92] KARPUSCHEWSKI B,KNOCHE H J,HIPKE M. Gear finishing by abrasive processes[J]. CIRP Annals- Manufacturing Technology,2008,57(2):621-640. [93] 刘明政,李长河,曹华军,等. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程,2022,33(5):529-550. LIU Mingzheng,LI Changhe,CAO Huajun,et al. Research progress and application of cryogenic minimum quantity lubrication machining technology[J]. China Mechanical Engineering,2022,33(5):529-550. [94] 高腾,李长河,张彦彬,等. 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报,2023,59(13):325-342. GAO Teng,LI Changhe,ZHANG Yanbin,et al. Mechanical behavior of material removal and predictive force model for cfrp grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering,2023,59(13):325-342. [95] KIZAKI T,TAKAHASHI K,KATSUMA T,et al. Prospects of dry continuous generating grinding based on specific energy requirement[J]. Journal of Manufacturing Processes,2021,61:190-207. [96] GUO C,CAMPOMANES M,MCINTOSH D,et al. Optimization of continuous dress creep-feed form grinding process[J]. CIRP Annals-Manufacturing Technology,2003,52(1):259-262. [97] WANG Z,LI Y,YU T,et al. Prediction of 3D grinding temperature field based on meshless method considering infinite element[J]. International Journal of Advanced Manufacturing Technology,2019,100(9-12):3067-3084. [98] JIAN X,QING X,DENG,et al. Numerical simulation and experimental analysis of temperature field of gear form grinding[J]. International Journal of Advanced Manufacturing Technology,2018,97(5-8):2351-2367. [99] SKURATOV,D L,FEDOROV D G. Temperature fields in grinding by abrasive wheels[J]. Russian Engineering Research,2017,37(6):557-560. [100] WANG X,YU T B,SUN X,et al.,Study of 3D grinding temperature field based on finite difference method:Considering machining parameters and energy partition[J]. International Journal of Advanced Manufacturing Technology,2016,84(5-8):915-927. [101] YI J,JIN T,DENG Z. The temperature field study on the three-dimensional surface moving heat source model in involute gear form grinding[J]. International Journal of Advanced Manufacturing Technology,2019,103(5-8):3097-3108. [102] JIN,T,YI J,LI P. Temperature distributions in form grinding of involute gears[J]. International Journal of Advanced Manufacturing Technology,2017,88(9-12):2609-2620. [103] SU,J,ZHANG Y,DENG X. Analysis and experimental study of cycloid gear form grinding temperature field[J]. International Journal of Advanced Manufacturing Technology,2020,110(3-4):949-965. [104] SADAT A B,BAILEY J A. Residual stresses in turned AISI 4340 steel[J]. Experimental Mechanics,1987,27(1):80-85. [105] MAMALIS A G,KUNDRAK J,GYANI K. On the dry machining of steel surfaces using superhard tools[J]. International Journal of Advanced Manufacturing Technology,2002,19(3):157-162. [106] THIELE J D,MELKOTE S N,PEASCOE R A,et al. Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel[J]. Journal of Manufacturing Science and Engineering,1999,122(04):642-649. [107] BALART M J,BOUZINA A,EDWARDS L,et al. The onset of tensile residual stresses in grinding of hardened steels[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004,367(1-2):132-142. [108] 梁志强,黄迪青,周天丰,等. 螺旋伞齿轮磨削残余应力分布规律及仿真分析[J]. 机械工程学报,2018,54(21):183-190. LIANG Zhiqiang,HUANG Diqing,ZHOU Tianfeng,et al. Distribution characteristic and simulation analysis on grinding residual stress of spiral bevel gears[J]. Journal of Mechanical Engineering,2018,54(21):183-190. [109] ZHAO B,GUO X C,BIE W B,et al.Thermo-mechanical coupling effect on surface residual stress during ultrasonic vibration-assisted forming grinding gear[J]. Journal of Manufacturing Processes,2020. 59:19-32. [110] 易军,龚志锋,易涛,等. 齿根过渡圆弧对全齿槽成形磨削温度和残余应力影响的研究[J]. 中国机械工程,2022,33(11):1278-1286. YI Jun,GONG Zhifeng,YI Tao,et al. Study on effects of tooth root transition arc on grinding temperature and residual stress during full tooth groove profile grinding[J] China Mechanical Engineering,2022,33(11):1278-1286. [111] XU L Y,FENG S C,GUO,SY,et al. Simulation analysis of temperature field and stress-strain in form grinding of cycloidal gear[C]//2022 12th International Conference on CYBER Technology in Automation,Control,and Intelligent Systems (CYBER),2022,162-167. [112] 刘彦臣,庞思勤,王西彬,等. 表面完整性对高强度钢疲劳寿命影响的试验研究[J]. 兵工学报,2013,34(6):759-764. LIU Yanchen,PANG Siqin,WANG Xibin,et al. Experimental study on effect of surface integrity on high-strength steel fatigue life[J]. Acta Armamentarii,2013,34(6):759-764. [113] 陈东祥,田延岭. 超精密磨削加工表面形貌建模与仿真方法[J]. 机械工程学报,2010,46(13):186-191. CHEN Dongxiang,TIAN Yanling. Modeling and simulation methodology of the machined surface in ultra-precision grinding[J] Journal of Mechanical Engineering,2010,46(13):186-191. [114] NOVOVIC D,DEWES R C,ASPINWALL D K,et al. The effect of machined topography and integrity on fatigue life[J]. International Journal of Machine Tools and Manufacture,2004,44(2-3):125-134. [115] DING H,WAN G,ZHOU Y,et al. Nonlinearity analysis based algorithm for indentifying machine settings in the tooth flank topography correction for hypoid gears[J]. Mechanism and Machine Theory,2017,113:1-21. [116] HAN D,TANG J,ZHOU Y,et al. A multi-objective correction of machine settings considering loaded tooth contact performance in spiral bevel gears by nonlinear interval number optimization[J]. Mechanism and Machine Theory,2017,113:85-108. [117] ZHANG S,ZHANG G,RAN Y,et al. Multi-objective optimization for grinding parameters of 20CrMnTiH gear with ceramic microcrystalline corundum[J]. Materials,2019,12(8):1352. [118] 梁志强,黄迪青,周天丰,等.螺旋伞齿轮磨削表面形貌仿真与试验研究[J]. 机械工程学报,2019,55(3):191-198. LIANG Zhiqiang,HUANG Diqing,ZHOU Tianfeng,et al. Simulation and experimental research on grinding surface topography of spiral bevel gear[J] Journal of Mechanical Engineering,2019,55(3):191-198. [119] MING X Z,YAN H Z,HE G Q,et al. Experiment study on micro-hardness and structure of NC grinding surface layer of spiral bevel gears[J]. Applied Mechanics and Materials,2011,127:60-568. [120] WANG L,TIAN X,LIU Q,et al. Surface integrity analysis of 20CrMnTi steel gears machined using the WD-201 microcrystal corundum grinding wheel[J]. International Journal of Advanced Manufacturing Technology,2017,93(5-8):2903-2912. [121] WANG W,LIU H,ZHU C,et al. Evaluation of contact fatigue risk of a carburized gear considering gradients of mechanical properties[J]. Friction,2020,8(6):1039-1050. [122] 许鸿翔,王红伟,蒲江涌,等. 20Cr2Ni4钢渗碳淬火弧齿锥齿轮磨削烧伤的检测与分析[J]. 金属热处理,2022,47(11):271-275. XU Hongxiang,WANG Hongwei,PU Jiangyong,et al. Detection and analysis of grinding burns of 20Cr2Ni4 steel carburized and quenched spiral bevel gears[J]. Heat Treatment of Metals,2022,47(11):271-275. [123] HUANG X,ZHOU Z,REN Y,et al. Experimental research material characteristics effect on white layers formation in grinding of hardened steel[J]. The International Journal of Advanced Manufacturing Technology,2013,66(9-12):1555-1561. [124] YI J,YI T,GUO ZF,et al. Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding[J]. The International Journal of Advanced Manufacturing Technology,2022,121(5-6):4141-4152. [125] WEN,J,TANG,JY,SHAO,W,et al. Towards understanding subsurface characteristics in burn process of gear profile grinding[J]. Materials,2023,16(6):2493. [126] 庞桂兵,阿达依·谢尔亚孜旦,徐文骥,等. 展成式电化学机械光整加工圆柱齿轮的齿面质量与精度特性[J]. 机械工程学报,2011,47(19):163-167. PANG Guibing,ADAI Sheryazidan,XU Wenji,et al. Surface quality and accuracy characteristics of cylindrical gears by generative electrochemical- mechanical finishing[J]. Journal of Mechanical Engineering,2011,47(19):163-167. [127] SHAIKH,J H,JAIN N K. Modeling of material removal rate and surface roughness in finishing of bevel gears by electrochemical honing process[J]. Journal of Materials Processing Technology,2014,214(2):200-209. [128] SINGH H,JAIN,P K. Study on ultrasonic-assisted electrochemical honing of bevel gears[J]. Proceedings of the Institution of Mechanical Engineers,Part B-Journal of Engineering Manufacture,2018,232(4):705-712. [129] 鲍志军. 小模数齿轮激光熔覆修复工艺试验研究[D]. 上海:海事大学,2007. BAO Zhijun. Experimental Study on Laser Cladding Repair Technology for Small Module Gears[D]. Shanghai:Maritime University,2007. [130] 王志坚. 装备零件激光再制造成形零件几何特征及成形精度控制研究[D]. 广州:华南理工大学,2011. WANG Zhijian. Research on geometric characteristics and shaping control of formed structure in laser remanufacturing Equipment Parts[D]. Guangzhou:South China University of Technology,2011. [131] 陈犧. 采煤机大齿轮的激光熔覆再制造关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2015. CHEN Xiang. Research on key technologies for laser cladding and remanufacturing of large gears in coal mining machines[D]. Harbin:Harbin Institute of Technology,2015. [132] 刘干成,黄博. 小模数齿轮齿面双道激光熔覆工艺[J]. 中国激光,2019,46(10):163-173. LIU Gancheng,HUANG Bo. Double-pass laser cladding process for small-modulus gear-tooth surface[J]. Chinese Journal of Lasers,2019,46(10):163-173. [133] HU Z,HONG L,WU G. Numerical simulation of curved surface of gear in laser cladding[J]. High-Power Lasers and Applications V,2010,7843:166-174. [134] WEI A G,TANG Y,TONG T,et al. Effect of WC on microstructure and wear resistance of fe-based coating fabricated by laser cladding[J]. Coatings,2022,12(8):1209. [135] CAO Y,ZHU Y,DING W,et al. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy[J]. Chinese Journal of Aeronautics,2022,35(2):332-345. [136] SUZUKI H,MARSHALL M,SIMS N,et al. Design and implementation of a non-resonant vibration-assisted machining device to create bespoke surface textures[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science,2017,231(5):860-875. [137] VENKATESH G,SHARMA A K,KUMAR P. On ultrasonic assisted abrasive flow finishing of bevel gears[J]. International Journal of Machine Tools and Manufacture,2015,89:29-38. [138] BIE W,ZHAO B,ZHAO C,et al. System Design and experimental research on the tangential ultrasonic vibration-assisted grinding gear[J]. International Journal of Advanced Manufacturing Technology,2021,116(1-2):597-610. [139] ZHAO J,ZHAO B,HAN M,et al. Grinding characteristics of ultra-high strength steel by ultrasonic vibration-assisted grinding with microcrystalline alumina wheel[J]. International Journal of Advanced Manufacturing Technology,2022. https://doi.org/10.1007/s00170-022-10768-1. |
[1] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[2] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[3] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[4] | 王湃, 白翌帆, 赵文祥, 张毅博, 刘志兵. 高温合金短电弧辅助铣削表面完整性演化研究[J]. 机械工程学报, 2024, 60(9): 434-444. |
[5] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[6] | 魏静, 刘指柔, 魏海波, 徐子扬. 高速薄辐板齿轮传动节径型振动位移与动应变时空变换方法[J]. 机械工程学报, 2024, 60(5): 70-80. |
[7] | 魏永峭, 张晋, 王少江, 漆小虎, 郭瑞, 杨海江. 变双曲圆弧齿线圆柱齿轮传动界面磨损规律及敏感性分析[J]. 机械工程学报, 2024, 60(5): 81-94. |
[8] | 师陆冰, 张志宏, 闫晓青, 汤伟毕, 裴帮, 刘忠明. 三峡升船机齿轮齿条运行载荷与疲劳寿命研究[J]. 机械工程学报, 2024, 60(5): 119-129. |
[9] | 邵海东, 林健, 闵志闪, 明宇航. 分布外样本干扰下基于改进半监督原型网络的齿轮箱跨域故障诊断[J]. 机械工程学报, 2024, 60(4): 212-221. |
[10] | 吴吉展, 魏沛堂, 刘怀举, 吴少杰, 朱才朝. 航空齿轮钢表面完整性与滚动接触疲劳性能关联规律研究[J]. 机械工程学报, 2024, 60(4): 284-295. |
[11] | 刘怀举, 陈地发, 朱才朝, 吴吉展, 魏沛堂. 齿轮弯曲疲劳的研究进展与发展趋势[J]. 机械工程学报, 2024, 60(3): 83-108. |
[12] | 雷震, 姜宏, 章翔峰, 李军, 孔艺一, 白宇. 行星齿轮系统齿裂纹演化分析[J]. 机械工程学报, 2024, 60(19): 101-115. |
[13] | 朱永超, 朱才朝, 谭建军, 冉峯, 宋朝省. 考虑数据特征差异的风电齿轮箱群组健康状态预测研究[J]. 机械工程学报, 2024, 60(18): 64-75. |
[14] | 代鹤, 罗顺安, 龙新华, 李元, 訾斌. 齿轮轴孔位置误差作用下行星齿轮啮合相位波动及其统计特性预测[J]. 机械工程学报, 2024, 60(15): 123-133. |
[15] | 曹杰, 任尊松, 查浩, 徐宁, 杨超. 高速动车组齿轮箱轴承载荷特性研究[J]. 机械工程学报, 2024, 60(15): 173-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||