• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 170-180.doi: 10.3901/JME.2024.03.170

• 机械动力学 • 上一篇    下一篇

扫码分享

基于双加权不平衡矩阵分类器的机械故障诊断方法

潘海洋1, 徐海锋1,2,3, 郑近德1, 童靳于1, 张飞斌2   

  1. 1. 安徽工业大学机械工程学院 马鞍山 243032;
    2. 清华大学机械工程系 北京 100084;
    3. 频率探索智能科技江苏有限公司 常州 213000
  • 收稿日期:2023-03-02 修回日期:2023-09-25 出版日期:2024-02-05 发布日期:2024-04-28
  • 通讯作者: 郑近德,男,1986年出生,博士,教授,博士研究生导师。主要研究方向为机械健康监测和故障诊断、统计信号处理和复杂性理论。E-mail:lqdlzheng@126.com
  • 作者简介:潘海洋,男, 1989 年出生,博士,讲师,硕士研究生导师。主要研究方向为机械健康监测、故障诊断、信号处理和模式识别。E-mail:pansea@sina.cn;徐海锋,男, 1996 年出生,硕士研究生。主要研究方向为模式识别与智能诊断。E-mail:haifenguuu@163.com;童靳于,女, 1987 年出生,高级实验师,硕士研究生导师。主要研究方向为统计信号处理、振动信号分析和测量。E-mail:jytong@ahut.edu.cn
  • 基金资助:
    国家自然科学基金(51975004)和安徽省高校自然科学研究重点(2022AH050292)资助资助。

Mechanical Fault Diagnosis Method Based on Twin Weighted Imbalanced Matrix Classifier

PAN Haiyang1, XU Haifeng1,2,3, ZHENG Jinde1, TONG Jinyu1, ZHANG Feibin2   

  1. 1. School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243032;
    2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084;
    3. FreqX Intelligence Technology Co., Ltd., Changzhou 213000
  • Received:2023-03-02 Revised:2023-09-25 Online:2024-02-05 Published:2024-04-28

摘要: 针对机械故障样本数量不平衡情景下的故障诊断模型存在精度与泛用性不高的问题,借鉴模糊属性理论获取强监督模型的思想,设计了一种双加权不平衡矩阵分类器(Twin weighted imbalanced matrix classifier, TWIMC)。TWIMC 通过使用基于样本不均衡度的模糊隶属函数调节每个样本的权重,以增强对少数类样本的关注,平衡模型对所有类别样本的倾向性。同时,TWIMC 依靠先验知识对核范数的奇异值进行权值分配,利用较大阈值过滤较小奇异值,进而保留矩阵样本的强关联低秩信息。最后,利用滚动轴承和齿轮故障数据集对所提方法进行验证,实验结果显示, TWIMC 在不同不平衡比条件下均表现突出,展示了优异的机械故障诊断与分类性能。

关键词: 双加权不平衡矩阵分类器, 支持矩阵机, 模糊隶属函数, 不平衡样本, 故障诊断

Abstract: Aiming at the problem of low accuracy and universality of fault diagnosis models in the scenario of imbalanced sample size for mechanical faults, a twin weighted imbalanced matrix classifier (TWIMC) is designed, drawing on the idea of obtaining a strong supervised model using fuzzy attribute theory. TWIMC adjusts the weight of each sample using a fuzzy membership function based on the degree of sample imbalance, thereby enhancing the focus on minority class samples and balancing the model's tendency towards all types of samples. Meanwhile, TWIMC utilizes prior knowledge to assign weights to the singular values of nuclear norm, preserving the strongly correlated low-rank information of matrix samples by filtering out smaller singular values with a larger threshold. Finally, the proposed method is validated using roller bearing and gear fault datasets. The experimental results showed that TWIMC performed outstandingly under different imbalance ratios, demonstrating excellent mechanical fault diagnosis and classification performance.

Key words: twin weighted imbalanced matrix classifier, support matrix machine, fuzzy membership function, imbalanced sample, fault diagnosis

中图分类号: