• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (1): 137-148.doi: 10.3901/JME.2024.01.137

• 特邀专栏:高性能制造专栏 • 上一篇    下一篇

扫码分享

基于等几何拓扑优化的柔性机构设计

许洁1, 高杰2, 肖蜜3, 高亮3   

  1. 1. 中国地质大学(武汉)机械与电子信息学院 武汉 430074;
    2. 华中科技大学航空航天学院 武汉 430074;
    3. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074
  • 收稿日期:2022-12-27 修回日期:2023-06-20 发布日期:2024-03-15
  • 作者简介:许洁,女,1992年出生,博士,讲师,硕士研究生导师。主要研究方向为拓扑优化、智能产品设计等。E-mail:xujie@cug.edu.cn
    高亮(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为智能优化方法及其在设计优化中的应用等研究,尤其是车间调度和拓扑优化。E-mail:gaoliang@mail.hust.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金(G1323521072)和国家自然科学基金青年基金(52105255)资助项目。

Design of Compliant Mechanisms by Topology Optimization Based on Isogeometric Analysis

XU Jie1, GAO Jie2, XIAO Mi3, GAO Liang3   

  1. 1. School of Mechanical Engineering and Electronic Information, China University of Geosciences(Wuhan), Wuhan 430074;
    2. School of Aerospace Engineering, Huazhong University of Science & Technology, Wuhan 430074;
    3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074
  • Received:2022-12-27 Revised:2023-06-20 Published:2024-03-15

摘要: 等几何分析能够将几何建模的基函数与结构数值分析的形函数统一,从而得到高精度的结构数值分析结果。面向柔性机构,提出了一种基于等几何拓扑优化的柔性机构设计方法:通过NURBS基函数和Shepard函数构造增强密度分布函数,该函数的高阶连续性可确保优化结构边界的光滑清晰;然后根据密度分布函数建立柔性机构的等几何拓扑优化模型;最后,将该方法应用于柔性机构设计。通过算例结果可知,等几何拓扑优化方法特有的计算原理可提高数值计算的精度和效率,能有效避免由网格依赖、棋盘格现象等产生的边界问题,确保了优化结构均具有较好的光滑性和连续性,验证了提出的方法能有效避免柔性机构的铰链现象。

关键词: 拓扑优化, 等几何分析, 柔性机构, 密度分布函数

Abstract: Isogeometric analysis can unify the basis function of geometric modeling and the shape function of structural analysis to obtain high-precision structural analysis results. The design method for compliant mechanisms based on isogeometric topology optimization is proposed. The NURBS basis function and Shepard function construct the density distribution function, in which high-order continuity can ensure the smooth and clear boundary of the optimized structure. Then, according to the density distribution function, the geometric topology optimization model of the compliant mechanisms is established. Finally, the method is applied to the design of compliant mechanisms. The results of numerical examples show that the unique calculation principle of the isogeometric topology optimization method can improve the accuracy and efficiency of numerical calculation. It can also effectively avoid boundary problems caused by mesh dependency, checkerboard phenomenon, and ensure that the optimized structures have smoothness and continuity. Optimization results verify that the method can effectively avoid the hinge phenomenon of compliant mechanisms.

Key words: topology optimization, isogeometric analysis, compliant mechanisms, density distribution function

中图分类号: