[1] ZHU B,ZHANG X,ZHANG H,et al. Design of compliant mechanisms using continuum topology optimization:A review[J]. Mechanism and Machine Theory,2020,143:103622. [2] ZHANG X,ZHU B. Topology optimization of compliant mechanisms[M]. Berlin:Springer Nature Singapore Pte Ltd.,2018. [3] 康荣杰,杨铖浩,杨名远,等. 会思考的机器-机械智能[J]. 机械工程学报,2018,54(13):15-24. KANG Rongjie,YANG Chenghao,YANG Mingyuan,et al. Machines which can think-mechanical intelligence (MI)[J]. Journal of Mechanical Engineering,2018,54(13):15-24. [4] HOWELL L L. Compliant mechanisms[M]. New York:John Wiley & Sons,Inc,2001. [5] BENDSQE M P,Kikuchi N. Generating optimal topologies in stuctural design using a homogenization method[J]. Comput Methods Appl Mech Eng,1988,71(2):197-224. [6] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [7] BENDSQE M P,SIGMUND O. Topology optimization:Theory,methods and applications[J]. Berlin:Springer,2003. [8] WANG M Y,WANG X,GUO D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246. [9] ALLAIRE G,JOUVE F,TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics,2004,194(1):363-393. [10] XIE Y M,STEVEN G P. Evolutionary structural optimization for dynamic problems[J]. Computers & Structures,1996,58(6):1067-1073. [11] GUO X,ZHANG W,ZHONG W. Doing topology optimization explicitly and geometrically-a new moving morphable components based framework[J]. Journal of Applied Mechanics,American Society of Mechanical Engineers Digital Collection,2014,81(8):081009. [12] 占金青,刘天舒,刘敏,等. 考虑疲劳性能的柔顺机构拓扑优化设计[J]. 机械工程学报,2021,57(3):59-68. ZHAN Jinqing,LIU Tianshu,LIU Min,et al. Topological design of compliant mechanisms considering fatigue constraints[J]. Journal of Mechanical Engineering,2021,57(3):59-68. [13] 何健,何猛,夏凉,等. 基于双向渐进结构优化法的柔性机构设计[J]. 机械工程学报,2021,57(19):39-47. HE Jian,HE Meng,XIA Liang,et al. Design of compliant Actuation mechanisms by evolutionary structural optimization method[J]. Journal of Mechanical Engineering,2021,57(19):39-47. [14] CHU S,GAO L,XIAO M,et al. Stress-based multi-material topology optimization of compliant mechanisms[J]. International Journal for Numerical Methods in Engineering,2018,113(7):1021-1044. [15] 朱本亮,张宪民,李海,等. 基于节点密度插值的多材料柔顺机构拓扑优化[J]. 机械工程学报,2021,57(15):53-61. ZHU Benliang,ZHANG Xianmin,LI Hai,et al. Topology optimization of multi-material compliant mechanisms using node-density interpolation scheme[J]. Journal of Mechanical Engineering,2021,57(15):53-61. [16] LIU M,ZHAN J,ZHU B,et al. Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness[J]. Mechanism and Machine Theory,2020,146:103728. [17] 乔赫廷,武双双,闫明,等. 基于转动约束策略的柔顺机构拓扑优化[J]. 机械工程学报,2023,59(1):82-90. QIAO Heting,WU Shuangshuang,YAN Ming,et al. Topology optimization of compliant mechanisms based on rotation constraint strategy[J]. Journal of Mechanical Engineering,2023,59(1):82-90. [18] NIU B,LIU XL,WALLIN M,et al. Topology optimization of compliant mechanisms considering strain variance[J]. Structural and Multidisciplinary Optimization,2020,62(3):1457-1471. [19] HUGHES T J R,COTTRELL J A,BAZILEVS Y. Isogeometric analysis:CAD,finite elements,NURBS,exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics & Engineering,2005,194(39-41):4135-4195. [20] XIE X,WANG S,XU M,et al. A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes[J]. Computer Methods in Applied Mechanics and Engineering,2018,339(1):61-90. [21] COTTRELL JA,HUGHES TJR,BAZILEVS Y. Isogeometric analysis:Toward integration of CAD and FEA[M]. West Sussex:John Wiley & Sons,2009. [22] NGUYEN VP,ANITESCU C,BORDAS SPA,et al. Isogeometric analysis:An overview and computer implementation aspects[J]. Math Comput Simul,2015,117:89-116. [23] QIAN X. Topology optimization in B-spline space[J]. Computer Methods in Applied Mechanics and Engineering,2013,265(1):15-35. [24] SEO Y-D,KIM H-J,YOUN S-K. Isogeometric topology optimization using trimmed spline surfaces[J]. Computer Methods in Applied Mechanics and Engineering,Elsevier,2010,199(49-52):3270-3296. [25] HASSANI B,KHANZADI M,TAVAKKOLI S M. An isogeometrical approach to structural topology optimization by optimality criteria[J]. Structural and multidisciplinary optimization,2012,45(2):223-233. [26] WANG Y,BENSON D J. Isogeometric analysis for parameterized LSM-based structural topology optimization[J]. Computational Mechanics,2016,57(1):19-35. [27] HOU W,GAI Y,ZHU X,et al. Explicit isogeometric topology optimization using moving morphable components[J]. Computer Methods in Applied Mechanics and Engineering,2017,326(1):694-712. [28] GAO J,XUE H,GAO L,et al. Topology optimization for auxetic metamaterials based on isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering,Elsevier,2019,352:211-236. [29] WANG Y,XU H,PASINI D. Multiscale isogeometric topology optimization for lattice materials[J]. Computer Methods in Applied Mechanics and Engineering,2017,316:568-585. [30] LIEU Q X,LEE J. An isogeometric multimesh design approach for size and shape optimization of multidirectional functionally graded plates[J]. Computer Methods in Applied Mechanics and Engineering,2019,343:407-437. [31] XU M,XIA L,WANG S,et al. An isogeometric approach to topology optimization of spatially graded hierarchical structures[J]. Composite Structures,2019,225:111171 [32] XU J,GAO L,XIAO M,et al. Isogeometric topology optimization for rational design of ultra-lightweight architected materials[J]. International Journal of Mechanical Sciences,2020,166:105103. [33] GAO J,XIAO M,ZHANG Y,et al. A comprehensive review of isogeometric topology pptimization:Methods,applications and prospects[J]. Chinese Journal of Mechanical Engineering,2020,33:87. [34] PEDERSEN C B W,BUHL T,SIGMUND O. Topology synthesis of large-displacement compliant mechanisms[J]. International Journal for Numerical Methods in Engineering,2001,50(12):2683-2705. [35] POULSEN T A. A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization[J]. Structural and Multidisciplinary Optimization,Springer,2002,24(5):396-399. [36] YOON G H,KIM Y Y,BENDSQE M P,et al. Hinge-free topology optimization with embedded translation-invariant differentiate wavelet shrinkage[J]. Structural and Multidisciplinary Optimization,2004,27(3):139-150. [37] SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization,2007,33(4-5):401-424. [38] POULSEN T A. A new scheme for imposing a minimum length scale in topology optimization[J]. International Journal for Numerical Methods in Engineering,2003,57(6):741-760. [39] WANG N F,ZHANG X M. Compliant mechanisms design based on pairs of curves[J]. Science China Technological Sciences,2012,55(8):2099-2106. [40] ZHAN K,WANG Y. A nodal variable method of structural topology optimization based on Shepard interpolant[J]. International Journal for Numerical Methods in Engineering,2012,90(3):329-342. |