[1] 金学松,赵国堂,梁树林,等. 高速铁路轮轨磨损特征、机理、影响和对策-车轮踏面横向磨耗[J]. 机械工程学报,2018,54(4):3-13. JIN Xuesong,ZHAO Guotang,LIANG Shulin,et al. Characteristics,mechanisms,influences and counter measures of high speed wheel/rail wear:Transverse wear of wheel tread[J]. Journal of Mechanical Engineering,2018,54(4):3-13. [2] 金学松,吴越,梁树林,等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报,2020,56(16):118-136. JIN Xuesong,WU Yue,LIANG Shulin,et al. Characteristics,mechanism,influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering,2020,56(16):118-136. [3] 肖新标. 复杂环境状态下高速列车脱轨机理研究[D]. 成都:西南交通大学,2013. XIAO Xinbiao. Study on high-speed train derailment mechanism in severe environment[D]. Chengdu:Southwest Jiaotong University,2013. [4] STRATMAN B,LIU Y M,MAHADEVAN S. Structural health monitoring of railroad wheels using wheel impact load detectors[J]. Journal of Failure Analysis and Prevention,2007,7(3):218-225. [5] GOMEZ E,GIMÉNEZ J G,ALONSO A. Method for the reduction of measurement errors associated to the wheel rotation in railway dynamometric wheelsets[J]. Mechanical Systems and Signal Processing,2011,25(8):3062-3077. [6] 宫雪,任尊松,范童柏,等. 轮轨力连续测试方法及1:5试验台验证[J]. 机械工程学报,2020,56(2):184-191. GONG Xue,REN Zunsong,FAN Tongbai,et al. Research on continuous measurement method for wheel-rail forces and validation with 1:5 scale roller rig test[J]. Journal of Mechanical Engineering,2020,56(2):184-191. [7] 杨桐. 基于图像处理的列车轮轨接触关系研究[D]. 兰州:兰州交通大学,2020. YANG Tong. Research on train-rail contact relationship based on image processing[D]. Lanzhou:Lanzhou Jiaotong University,2020. [8] 马增强,王永胜,宋子彬. 基于激光源的机车轮轨相对横移图像检测[J]. 图学学报,2017,38(4):623-628. MA Zengqiang,WANG Yongsheng,SONG Zibin. The image detection of wheel-rail relative lateral displacement based on laser[J]. Journal of Graphics,2017,38(4):623-628. [9] SHI D C,ŠABANOVIČ E,RIZZETTO L,et al. Deep learning based virtual point tracking for real-time target-less dynamic displacement measurement in railway applications[J]. Mechanical Systems and Signal Processing,2022,166:108482. [10] 孟琭,杨旭. 目标跟踪算法综述[J]. 自动化学报,2019,45(7):1244-1260. MENG Lu,YANG Xu. A survey of object tracking algorithms[J]. Acta Automatica Sinica,2019,45(7):1244-1260. [11] PEI L L,ZHANG H,YANG B. Improved Camshift object tracking algorithm in occluded scenes based on AKAZE and Kalman[J]. Multimedia Tools and Applications,2022,81(2):2145-2159. [12] DAI Y T,CHEN Z G,FU Y. Rotation-based scale adaptive moving target tracking algorithm[J]. Laser & Optoelectronics Progress,2021,58(12):1210019. [13] HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,37(3):583-596. [14] LIANG H G,GAO D M,LI J W,et al. Improved target tracking algorithm based on kernelized correlation filter[J]. Journal of Electronic Imaging,2019,28(2):021008. [15] 成旺荣. 基于KCF的抗云遮挡目标跟踪方法研究[D]. 武汉:华中科技大学,2020. CHENG Wangrong. Research on target tracking algorithm against cloud occlusion based on KCF[D]. Wuhan:Huazhong University of Science and Technology,2020. [16] HADMI A,ROUIJEL A. A novel approach for robust perceptual image hashing[J]. Computer and Information Science,2021,14(3):1-38. [17] 董晶. 模板图像快速可靠匹配技术研究[D]. 长沙:国防科学技术大学,2015. DONG Jing. Study on fast and reliable pattern match[D]. Changsha:National University of Defense Technology,2015. [18] CATERINA G D,SORAGHAN J J. Robustcomplete occlusion handling in adaptive template matching target tracking[J]. Electronics Letters,2012,48(14):831-832. |