• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (21): 234-244.doi: 10.3901/JME.2023.21.234

• 机械动力学 • 上一篇    下一篇

扫码分享

谐波特征模式分解方法在轴承故障诊断中的应用

苗永浩1, 石惠芳1, 李晨辉1, 王南飞2   

  1. 1. 北京航空航天大学可靠性与系统工程学院 北京 100191;
    2. 中国船舶重工集团新能源有限责任公司 北京 100097
  • 收稿日期:2022-12-26 修回日期:2023-07-20 出版日期:2023-11-05 发布日期:2024-01-15
  • 通讯作者: 苗永浩(通信作者),男,1992年出生,博士研究生,副教授,硕士研究生导师。主要研究方向为机械装备故障诊断与预测、深度学习和剩余寿命预测。E-mail:miaoyonghao@buaa.edu.cn
  • 作者简介:石惠芳,女,2001年出生,硕士研究生。主要研究方向为机械装备故障诊断与寿命预测。E-mail:shihuifang22@buaa.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2021YFB2500604)。

Harmonic Feature Mode Decomposition and Its Application for Bearing Fault Diagnosis

MIAO Yonghao1, SHI Huifang1, LI Chenhui1, WANG Nanfei2   

  1. 1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191;
    2. China Shipbuilding New Power Co., Ltd., Beijing 100097
  • Received:2022-12-26 Revised:2023-07-20 Online:2023-11-05 Published:2024-01-15

摘要: 分解方法是处理机械信号多成分分离最有效的手段。然而,现有的分解方法并非以典型的机械故障特征作为分解目标,且分解模式的提取难以做到自适应滤波,因此面对复杂信号的成分分离与特征提取效果差,难以满足诊断需求。针对此,提出谐波特征模式分解方法(Harmonic feature mode decomposition ,HFMD),选择信号周期性强度评价指标谐噪比(Harmonics-to-noise ratio,HNR)作为分解目标,借助有限冲激响应(Finite impulse response,FIR)滤波器系数更新机制实现分解模式提取过程中的自适应滤波。首先,借助基于树状结构的频带划分方式初始化滤波器组。在此基础上,以HNR作为分解目标求解最优滤波器系数。进一步,利用相关系数评价、比较进而筛选冗余模式。最后,通过设定分解模式数量作为收敛准则,实现复杂信号中周期性特征的提取与谐波信号成分的分离。仿真和试验案例证实相比于传统分解方法,提出的HFMD能更准确、有效地提取轴承故障信息。

关键词: 分解, 谐噪比, 故障诊断, 滚动轴承, 自适应滤波

Abstract: Decomposition methods are the most effective means to handle the multi-component separation of mechanical signals. However, the existing decomposition methods do not take typical mechanical fault features as the decomposition target, and the extraction of decomposition modes is difficult to achieve adaptive filtering. Thus, the poor component separation and feature extraction effect of complex signals makes it insufficient to meet the diagnostic needs. In view of this, the harmonic feature mode decomposition (HFMD) is proposed. The signal periodic intensity evaluation index, harmonics-to-noise ratio (HNR) is selected as the decomposition target. The finite impulse response (FIR) filter coefficient updating mechanism is used to achieve adaptive filtering in the extraction of decomposition modes. Firstly, the filter bank is initialized with a tree-based band division method. On this basis, the optimal filter coefficients are solved with HNR as the decomposition target. Furthermore, the correlation coefficient is used to evaluate, compare and reduce the redundant modes. Finally, the extraction of periodic features in complex signals and the separation of harmonic components are realized by setting the number of modes as the convergence criterion. Simulation and experimental cases verify that the proposed HFMD can extract the bearing fault information more accurately and effectively than the traditional decomposition methods.

Key words: decomposition, harmonics-to-noise ratio, fault diagnosis, rolling bearing, adaptive filtering

中图分类号: