[1] 林京. 机器信息学:机械产品智能化的学科支撑[J]. 机械工程学报, 2021, 57(2):11-20. LIN Jing. Machinery informatics:A fundamental discipline to intelligent machinery[J]. Journal of Mechanical Engineering, 2021, 57(2):11-20. [2] 张龙,毛志德,熊国良,等. 滚动轴承故障诊断的自适应包络谱谱峰因子算法[J]. 机械科学与技术, 2019, 38(4):507-514. ZHANG Long, MAO Zhide, XIONG Guoliang, et al. Adaptive fault diagnosis of rolling bearings based on crest factor of envelope spectrum[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4):507-514. [3] LIAN Jijian, LIU Zhuo, WANG Haijun, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic[J]. Mechanical Systems and Signal Processing, 2018, 107:53-77. [4] 陈是扦,彭志科,周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17):91-107. CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17):91-107. [5] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995. [6] 郑近德,潘海洋,程军圣,等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9):125-136. ZHENG Jinde, PAN Haiyang, CHENG Junsheng, et al. Adaptive empirical fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56(9):125-136. [7] WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41. [8] SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5):443-454. [9] LI Yongbo, XU Minqiang, LIANG Xihui, et al. Application of bandwidth EMD and adaptive multiscale morphology analysis for incipient fault diagnosis of rolling bearings[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6506-6517. [10] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010. [11] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3):531-544. [12] 王琇峰,文俊. 基于噪声信号和改进VMD的滚动轴承故障诊断[J]. 噪声与振动控制, 2021, 41(2):118-124. WANG Xiufeng, WEN Jun. Fault diagnosis of rolling bearings based on noise signal and improved VMD[J]. Noise and Vibration Control, 2021, 41(2):118-124. [13] 段晨东,张荣. 基于改进经验小波变换的机车轴承故障诊断[J]. 中国机械工程, 2019, 30(6):631-637. DUAN Chendong, ZHANG Rong. Locomotive bearing fault diagnosis using an improved empirical wavelet transform[J]. China Mechanical Engineering, 2019, 30(6):631-637. [14] XU Xiaoqiang, ZHAO Ming, LIN Jing, et al. Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis[J]. Measurement, 2016, 91:385-397. |