[1] 高飞,孙野,杨俊英,等. 摩擦副结构与制动盘温度关系的试验与模拟研究[J]. 机械工程学报,2015,51(19):182-188. GAO Fei,SUN Ye,YANG Junying,et al. Experimental and simulation research on relationships of the pattern of a friction pair and temperature[J]. Journal of Mechanical Engineering,2015,51(19):182-188. [2] SINOU J J,LOYER A,CHIELLO O,et al. A global strategy based on experiments and simulations for squeal prediction on industrial railway brakes[J]. Journal of Sound and Vibration,2013,332(50):68-85. [3] XIAO J K,XIAO S X,CHEN J,et al. Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h[J]. Tribology International,2020,150:106357. [4] 乔青峰,杨伟东,朱琪,等. 铁路盘型制动噪声机理及其控制方法[J]. 西南交通大学学报,2021,56(1):62-67. QIAO Qingfeng,YANG Weidong,ZHU Qi,et al. Generation mechanism of railway disc brake squeal and its suppression method[J]. Journal of Southwest Jiaotong University,2021,56(1):62-67. [5] ZARRAGA O,ULACIA I,MANUEL ABETE J,et al. Receptance based structural modification in a simple brake-clutch model for squeal noise suppression[J]. Mechanical Systems and Signal Processing,2017,90:222-233. [6] 李小彭,李加胜,李木岩,等. 盘式制动系统参数对制动颤振的影响分析[J]. 振动.测试与诊断,2017,37(1):102-107,202. LI Xiaopeng,LI Jiasheng,LI Muyan,et al. Analysis of the effect of disc brake system parameters on brake chatter[J]. Journal of Vibration, Measurement and Diagnosis,2017,37(1):102-107,202. [7] CANTONE F,MASSI F. A numerical investigation into the squeal instability:Effect of damping[J]. Mechanical Systems and Signal Processing,2011,25:1727-1737. [8] YAN L,ZHANG Q,WANG J,et al. Effect of ultrasonic vibration on tribological behavior of carbon-carbon composite[J]. Tribology International,2019,136:469-474. [9] XIANG Z Y,QIAN H H,MO J L,et al. Improving the tribological behavior of the brake interface of high-speed trains via a cantilever beam structure[J]. Tribology International,2021,155:106783. [10] REZAEI M,TALEBITOOTI R,RAHMANIAN S. Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances[J]. Energy,2019,182:369-380. [11] YANG Z,ZU J. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting[J]. Energy Conversion and Management,2016,122:321-329. [12] 陈伟,项载毓,钱泓桦,等. 基于摩擦自激振动升频效应的超低频振动能量收集[J]. 机械工程学报,2021,57(15):160-167. CHEN Wei,XIANG Zaiyu,QIAN Honghua,et al. The Frequency-up-conversion effect driven by friction-induced vibration for ultra-low frequency vibration energy harvesting[J]. Journal of Mechanical Engineering,2021,57(15):160-167. [13] 亓有超,赵俊青,张弛. 微纳振动能量收集器研究现状与展望[J]. 机械工程学报,2020,56(13):1-15. QI Youchao,ZHAO Junqing,ZHANG Qi. Review and prospect of micro-nano vibration energy harvesters[J]. Journal of Mechanical Engineering,2020,56(13):1-15. [14] WANG D W,MO J L,WANG X F,et al. Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration[J]. Energy Conversion and Management,2018,171:1134-1149. [15] TADOKORO C,MATSUMOTO A,NAGAMINE T,et al. Piezoelectric power generation using friction-induced vibration[J]. Smart Materials and Structures,2017,26:065012. [16] GREEN P L,WORDEN K,SIMS N D. On the identification and modelling of friction in a randomly excited energy harvester[J]. Journal of Sound and Vibration,2013,332:4696-4708. [17] 张立军,吴军,孟德建. 摩擦引起的模态耦合不稳定性分析[J]. 机械工程学报,2015,51(21):65-72. ZHANG Lijun,WU Jun,MENG Dejian. Analysis of friction induced mode coupling instability[J]. Journal of Mechanical Engineering,2015,51(21):65-72. [18] ZHANG Z,OBERST S,LAI J C S. On the potential of uncertainty analysis for prediction of brake squeal propensity[J]. Journal of Sound and Vibration,2016,377:123-132. [19] WEI D,SONG J,NAN Y,et al. Analysis of the stick-slip vibration of a new brake pad with double-layer structure in automobile brake system[J]. Mechanical Systems and Signal Processing,2019,118:305-316. |