• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (12): 139-148.doi: 10.3901/JME.2023.12.139

• 特邀专栏:制造大数据分析与决策 • 上一篇    下一篇

扫码分享

基于Kriging模型的在役高速列车悬挂参数近似贝叶斯估计

何庆1, 利璐1, 李晨钟1, 王平1, 谢斯2   

  1. 1. 西南交通大学高速铁路线路工程教育部重点实验室 成都 610031;
    2. 轨道交通工程信息化国家重点实验室(中铁一院) 西安 710043
  • 收稿日期:2022-08-20 修回日期:2023-01-20 出版日期:2023-06-20 发布日期:2023-08-15
  • 通讯作者: 谢斯(通信作者),男,1987年出生,硕士,工程师。主要研究方向为交通大数据、铁路安全运维决策、轨道不平顺分析与管理、钢轨伤损检测与分析。E-mail:s8xie@qq.com
  • 作者简介:何庆,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为交通大数据、铁路安全运维决策、轨道不平顺分析与管理、钢轨伤损检测与分析。E-mail:qhe@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(51878576)和高铁联合基金(U1934214)资助项目。

Approximate Bayesian Estimation of Suspension Parameters of In-service High-speed Trains Based on Kriging Surrogate Model

HE Qing1, LI Lu1, LI Chenzhong1, WANG Ping1, XIE Si2   

  1. 1. MOE Key Laboratory of High-Speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031;
    2. State Key Laboratory of Rail Transit Engineering Informatization (FSDI), Xi'an 710043
  • Received:2022-08-20 Revised:2023-01-20 Online:2023-06-20 Published:2023-08-15

摘要: 高速列车在长期服役情况下,车辆悬挂部件参数与其初始设计值之间会产生较大差异。车辆物理参数识别方法操作复杂、费用较高,参数估计只需要利用少量的传感器获取车辆振动状态信息,就能估算出车辆关键部件实际参数值。结合实测轨检数据和多体动力学仿真模型,提出一种基于Kriging模型的近似贝叶斯计算(ABC)方法对在役高速列车的悬挂参数进行估计。首先,利用Kriging模型代替多体动力学模型作为近似贝叶斯计算中的数值模型;然后,以单目标优化代替多目标处理以简化ABC中参数估计,得到不同加权因子组合下悬挂参数的后验分布,后验分布中最大相对概率所对应的参数值即为悬挂参数的估计值;最后,将得到的悬挂参数的估计值输入多体动力学模型中进行车体加速度的预测,并与实测车体加速度进行对比。结果表明,相比于依据车辆初始参数进行仿真计算的结果,以车体垂向加速度作为优化目标时,预测垂向加速度值与实际值功率谱密度曲线的皮尔逊相关系数增加了0.919;以车体横向加速度作为优化目标时,预测横向加速度与实际值的相关系数增加了0.427;同时以车体垂向、横向加速度作为优化目标时,预测垂向、横向加速度与实际值的相关系数分别增加了0.861、0.366,能对在役高速列车的悬挂参数进行有效估计,从而为进行进一步车辆参数优化提供技术支持。

关键词: 高速列车, 悬挂参数估计, 近似贝叶斯计算, Kriging代理模型, 多体动力学仿真

Abstract: In the case of long-term service of high-speed trains, the operating parameters of the vehicle suspension are very different from the factory parameters. The identification method of vehicle physical parameters is complicated and expensive, but the parameter estimation can estimate the actual parameters of key components of vehicles only by using a few sensors to obtain the vehicle vibration state information. An approximate Bayesian calculation (ABC) method based on Kriging model is proposed to estimate the suspension parameters of high-speed trains in service by combining the measured track inspection data and multi-body dynamics simulation model. First, the authors utilize the Kriging proxy model instead of the multi-body dynamics model as the numerical model in the ABC. Second, the authors adopt single-objective optimization instead of multi-objective processing to simplify parameter estimation in ABC and obtain the posterior distributions of the suspension parameters under different weighting factors combinations. The parameter value corresponding to the maximum relative probability in the posterior distribution is the estimated value of the suspension parameter. Finally, the estimated values of the suspension parameters are introduced into the multi-body dynamics model to predict the car-body acceleration, which is compared with the real-world car-body acceleration. The results show that the Pearson correlation coefficient between the power spectral density curve of the predicted vertical acceleration value and the power spectral density curve of the ground truth is increased by 0.919 before optimization when only the vertical acceleration of the car-body is used as the optimization target compared with the simulation results based on the initial vehicle parameters. The correlation coefficient between the predicted lateral acceleration and ground truth is increased by 0.427 when only the lateral acceleration of the car-body is used as the optimization target. When the vertical and lateral accelerations of the car-body are used as the optimization targets, the correlation coefficient between the predicted vertical acceleration, lateral acceleration, and the actual values are increased by 0.861 and 0.366, respectively. This shows that the proposed method can effectively estimate the suspension parameters of high-speed trains in service, which provides technical support for further vehicle parameter optimization.

Key words: high-speed train, suspension parameter estimation, approximate Bayesian calculation, Kriging proxy model, multi-body dynamics simulation

中图分类号: