[1] 梁宾,赵岩,赵清江,等. 基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J]. 机械工程学报,2019,55(18):53-62. LIANG Bin,ZHAO Yan,ZHAO Qingjiang,et al. On the prediction of failure in 6016 aluminum alloy sheet by Gissmo damage model[J]. Journal of Mechanical Engineering,2019,55(18):53-62. [2] 陈炜,吴浩,杨伟龙,等. 冲压速度对铝合金板成形性的影响[J]. 热加工工艺,2017,46(19):142-145. CHEN Wei,WU Hao,YANG Weilong,et al. Effect of stamping speed on formability of aluminum alloy sheet[J]. Hot Working Technology,2017,46(19):142-145. [3] 安治国,周杰,张渝,等. 工艺参数对AA5754铝镁合金板料成形的影响[J]. 热加工工艺,2009,38(13):5-7. AN Zhiguo,ZHOU Jie,ZHANG Yu,et al. Effect of process parameters on sheet forming of AA5754 Al-Mg alloy[J]. Hot Working Technology,2009,38(13):5-7. [4] 冯振宇,李恒晖,刘义,等. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报,2020,34(6):12088-12093. FENG Zhenyu,LI Henghui,LIU Yi,et al. Comparison of constitutive and failure models of 7075-T7351 alloy at intermediate and low strain rates[J]. Materials Reports,2020,34(6):12088-12093. [5] 惠旭龙,白春玉,刘小川,等. 宽应变率范围下 2A16-T4铝合金动态力学性能[J]. 爆炸与冲击,2017,37(5):871-878. HUI Xulong,BAI Chunyu,LIU Xiaochuan,et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion and Shock Waves,2017,37(5):871-878. [6] MASUDA T,KOBAYASHI L,WANG L,et al. Effects of strain rate on deformation behaviour of A6061-T6[J]. Materials Science Forum,2003,426(1):285-290. [7] 万鑫铭. 不同断裂准则下铝合金冲压成形裂纹扩展模拟[J]. 重庆大学学报,2018,41(2):37-43. WAN Xinming. Simulation of crack propagation in aluminum alloy stamping with different fracture criterion[J]. Journal of Chongqing University,2018,41(2):37-43. [8] ZHAN Z X,HU W P,MENG Q C,et al. Continuum damage mechanics-based approach to the fatigue life prediction for 7050-T7451 aluminum alloy with impact pit[J]. International Journal of Damage Mechanics,2016,25(7):943-966. [9] 倪阳,周储伟,喻溅鉴,等. 基于连续损伤力学的铝合金冲击局部损伤及后继疲劳寿命[J]. 南京航空航天大学学报,2019,51(1):63-68. NI Yang,ZHOU Chuwei,YU Jianjian,et al. Impact local damage and consequent fatigue life of aluminum alloy using continuum damage mechanics[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(1):63-68. [10] 陈伟. 冲压成形工艺对材料疲劳性能影响的实验研 究[J]. 锻压技术,2015,40(12):126-130. CHEN Wei. Experimental study on the effect of stamping process on the fatigue properties of materials[J]. Forging Technology,2015,40(12):126-130. [11] 林慧国. 铝合金应用手册[M]. 北京:机械工业出版社,2006. LIN Huiguo. Application manual of aluminum alloy[M]. Beijing:China Machine Press,2006. [12] 周迅. 曲轴弯曲疲劳试验系统的研究与开发[D]. 杭州:浙江大学,2003. ZHOU Xun. Research and development of crankshaft bending fatigue test system[D]. Hangzhou:Zhejiang University,2003. [13] 高镇同. 疲劳可靠性[M]. 北京:北京航空航天大学出版社,2000. GAO Zhentong. Fatigue reliability[M]. Beijing:Beijing University of Aeronautics and Astronautics Press,2000. [14] 高彩茹. 车轮轮辐钢S500LF的疲劳性能[J]. 东北大学学报,2020,41(8):1148-1152. GAO Cairu. Fatigue properties of wheel spoke steel S500LF[J]. Journal of Northeastern University,2020,41(8):1148-1152. [15] 高玉魁,陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响[J]. 爆炸与冲击,2021,41(4):1-26. GAO Yukui,TAO Xuefei. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion and Shock Waves,2021,41(4):1-26. [16] 赵荣国,罗希延,蒋永洲,等. 航空发动机涡轮盘用GH4133B合金疲劳损伤与断口分析[J]. 机械工程学报,2011,47(6):92-100. ZHAO Rongguo,LUO Xiyan,JIANG Yongzhou,et al. Fatigue damage and fracture analysis of GH4133B alloy used in aero-engine turbine disc[J]. Journal of Mechanical Engineering,2011,47(6):92-100. [17] LEE Y L,PAN J,HATHAWAY R,et al. Fatigue testing and analysis:Theory and practice[M]. Beijing:National Defense Industry Press,2011. |