• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (4): 163-172.doi: 10.3901/JME.2023.04.163

• 运载工程 • 上一篇    下一篇

扫码分享

四轮轮毂电机驱动电动汽车纵侧向稳定性协调控制策略研究

吴建洋1,2,3, 王震坡1,2, 张雷1,2, 丁晓林1,2   

  1. 1. 北京理工大学电动车辆国家工程实验室 北京 100081;
    2. 北京理工大学北京电动车辆协同创新中心 北京 100081;
    3. 北京航天发射技术研究所 北京 100076
  • 收稿日期:2022-04-05 修回日期:2022-08-09 出版日期:2023-02-20 发布日期:2023-04-24
  • 通讯作者: 张雷(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为电动车辆储能系统管理技术,智能网联新能源汽车决策、规划与主动安全控制技术。E-mail:lei_zhang@bit.edu.cn
  • 作者简介:吴建洋,女,1991年出生,博士研究生。主要研究方向为分布式驱动底盘协调控制。E-mail:wujianyang@bit.edu.cn;王震坡,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为车辆动力学理论与控制,车用锂离子动力电池成组理论与技术。E-mail:wangzhenpo@bit.edu.cn;丁晓林,男,1993年出生,博士研究生。主要研究方向为四轮轮毂电机驱动电动汽车动力学理论与控制。E-mail:xld_vehicle@163.com
  • 基金资助:
    国家重点研发计划(2017YFB0103600)和北京市科技新星计划(Z201100006820007)资助项目。

Coordination Stability Control Strategy for Four-wheel-independent-actuated Electric Vehicles

WU Jianyang1,2,3, WANG Zhenpo1,2, ZHANG Lei1,2, DING Xiaolin1,2   

  1. 1. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081;
    2. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081;
    3. Beijing Institute of Space Launch Technology, Beijing 100076
  • Received:2022-04-05 Revised:2022-08-09 Online:2023-02-20 Published:2023-04-24

摘要: 结合四轮轮毂电机驱动电动汽车四轮转矩独立可控的特点,针对加速同时转向时地面附着力不足的情况,研究车辆纵向和侧向稳定性协调控制策略。针对未知和复杂多变的路面附着情况,设计对路面附着变化具有良好鲁棒性的滑转率自寻优驱动防滑控制策略,采用滑模控制方法实现了对路面最优滑转率的自适应追踪。在此基础上,构建稳定性协调控制策略,通过对车辆纵、侧向动力学目标进行优先级判断和多目标协调控制,有效提升了车辆纵向和侧向稳定性。通过CarSim-Simulink联合仿真验证了驱动防滑控制策略在未知路面附着情况下的有效性,提出的纵侧向稳定性协调控制策略能够有效提升车辆的纵向和侧向稳定性,控制效果优于直接横摆力矩控制。

关键词: 四轮轮毂电机驱动电动汽车, 车辆稳定性, 驱动防滑, 协调控制, 滑模控制

Abstract: A coordination stability control strategy is proposed for four-wheel-independent-actuated electric vehicles in the combined acceleration and cornering maneuver on roads with limited adhesion. An acceleration slip regulation(ASR) strategy robust to unknown road friction conditions is first developed, which can track the optimum wheel slip ratio based on sliding model control(SMC) algorithm. Then, a coordination stability control strategy is proposed to simultaneously enhance vehicle lateral and longitudinal stability. The acceleration intention of the driver, the lateral stability control objective and the wheel slip control constraints are accounted for. Simulation results in CarSim-Simulink verify the effectiveness of the proposed ASR scheme in a diverse variety of road friction conditions, and the vehicle lateral and longitudinal stability can be significantly improved under the proposed coordination stability control scheme, compared to the state-of-the-art direct yaw moment control(DYC).

Key words: four-wheel-independent-actuated electric vehicles, ehicle stability, acceleration slip regulation, coordination control, sliding model control

中图分类号: