[1] 周成,叶其斌,田勇,等. 超高强度结构钢的研究及发展[J]. 材料热处理学报,2021,42(1):14-23. ZHOU Cheng,YE Qibin,TIAN Yong,et al. Research and application progress of ultra-high strength structural steel[J]. Transactions of Materials and Heat Treatment,2021,42(1):14-23. [2] 王春健,高鹏,陈晓红,等. CF170超高强度不锈钢齿轮制造技术研究[J]. 新技术新工艺,2017(9):6-9. WANG Chunjian,GAO Peng,CHEN Xiaohong,et al. Research on manufacturing techniques of ultra-high strength stainless steel gears[J]. New Technology & New Process,2017(9):6-9. [3] Zhao W,Liu D,Zhang X,et al. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process[J]. International Journal of Fatigue,2019,121:30-38. [4] 谭晓明,张丹峰,战贵盼,等. 海洋环境与疲劳载荷联合作用下喷丸超高强度钢损伤机制[J]. 航空学报,2020,41(8):261-269. TAN Xiaoming,ZHANG Danfeng,ZHAN Guipan,et al. Damage mechanism of shot peened ultra-high strength steel under combined action of marine environment and fatigue load[J]. Acta Aeronautica et Astronautica Sinica,2020,41(8):261-269. [5] 李南,罗志强,刘龙,等. 扭力轴断裂原因分析[J]. 金属热处理,2019,44(S1):255-257. LI Nan,LUO Zhiqiang,LIU Long,et al. Failure analysis of torsion axis[J]. Heat Treatment of Metals,2019,44(S1):255-257. [6] He B,Hu B,Yen H,et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science,2017,357(6355):1029-1032. [7] Fang T,Li W,Tao N,et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331(6024):1587-1590. [8] Gibbons S,Abrahams R,Vaughan M,et al. Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing[J]. Materials Science and Engineering:A,2018,725:57-64. [9] 付磊,林莉,罗云蓉,等. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报,2021,35(3):3114-3121. FU Lei,LIN Li,LUO Yunrong,et al. Progress in fatigue properties of gradient nanostructured materials[J]. Materials Reports,2021,35(3):3114-3121. [10] HU Xin,XIE Lijing,GAO Feinong,et al. On the development of material constitutive model for 45CrNiMoVA ultra-high-strength steel[J]. Metals,2019,9(3):314-374. [11] 梁志强,陈一帆,栾晓圣,等. 超高强度钢强力滚压残余应力仿真与试验研究[J]. 表面技术,2021,50(1):413-421. LIANG Zhiqiang,CHEN Yifan,LUAN Xiaosheng,et al. Simulation and experimental study on residual stress of ultra-high strength steel under powerful rolling[J]. Surface Technology,2021,50(1):413-421. [12] Unal O,Varol R. Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening[J]. Applied Surface Science,2014,290:40-47. [13] Wang H,Song G,Tang G. Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process[J]. Surface and Coatings Technology,2015,282:149-154. [14] Wang H,Chen L,Liu D,et al. Study on electropulsing assisted turning process for AISI 304 stainless steel[J]. Materials Science and Technology,2015,31(13):1564-1571. [15] Li G,Qu S,Xie M,et al. Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy[J]. Surface and Coatings Technology,2017,316:75-84. [16] Juijerm P,Altenberger I. Effect of high-temperature deep rolling on cyclic deformation behavior of solution-heat-treated Al-Mg-Si-Cu alloy[J]. Scripta Materialia,2007,56(4):285-288. [17] 贺哲龙,雷丽萍,曾攀. 温滚压对H13钢疲劳寿命的影响研究[J]. 塑性工程学报,2017,24(1):74-78. HE Zhelong,LEI Liping,ZENG Pan. Effect of warm surface rolling on fatigue property of H13 steel[J]. Journal of Plasticity Engineering,2017,24(1):74-78. [18] Wick A,Schulze V,Vöhringer O. Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel[J]. Materials Science and Engineering:A,2000,293(1):191-197. [19] MENIG R,SCHULZE V,Vöhringer O. Optimized warm peening of the quenched and tempered steel AISI 4140[J]. Materials Science and Engineering:A,2002,335(1):198-206. [20] SHENG J,HUANG S,ZHOU J Z,et al. Effects of warm laser peening on the elevated temperature tensile properties and fracture behavior of IN718 nickel-based superalloy[J]. Engineering Fracture Mechanics,2017,169:99-108. [21] LI X,WEI D,ZHANG J Y,et al. Ultrasonic plasticity of metallic glass near room temperature[J]. Applied Materials Today,2020,21:100866. [22] 曹秒艳,田少杰,胡晗,等. 超声振动条件下AZ31B镁合金本构关系[J]. 中国有色金属学报,2020,30(7):1584-1593. CAO Miaoyan,TIAN Shaojie,HU Han,et al. Constitutive relationship of AZ31B magnesium alloy under ultrasonic vibration[J]. Transactions of Nonferrous Metals Society of China,2020,30(7):1584-1593. [23] 张硕,徐梓真,张冰,等. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究[J]. 材料导报,2017,31(2):82-86. ZHANG Shuo,XU Zizhen,ZHANG Bing,et al. Surface properties of quenched GCr15 steel enhanced by electropulsing ultrasonic surface rolling process[J]. Materials Reports,2017,31(2):82-86. [24] ZHAO W,LIU D,ZHANG X,et al. The effect of electropulsing-assisted ultrasonic nanocrystal surface modification on the microstructure and properties of 300M steel[J]. Surface and Coatings Technology,2020,397:125994. [25] LUAN X,ZHAO W,LIANG Z,et al. Experimental study on surface integrity of ultra-high-strength steel by ultrasonic hot rolling surface strengthening[J]. Surface and Coatings Technology,2020,392:125745. [26] 栾晓圣,梁志强,赵文祥,等. 组织状态对45CrNiMoVA钢超声滚压表面完整性的影响[J]. 中国表面工程, 2021, 34(4):74-81.LUAN Xiaosheng,LIANG Zhiqiang,ZHAO Wenxiang, et al.Effect of microstructure on surface integrity of 45CrNiMoVA steel by ultrasonic surface rolling process[J].China Surface Engineering, 2021, 34(4):74-81. [27] LIU J,SUSLOV S,REN Z,et al. Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification[J]. International Journal of Machine Tools and Manufacture,2019,136:19-33. [28] 李波,孙清,刘卓毅,等. 超声滚压对7075铝合金耐腐蚀性能的影响[J]. 中国表面工程, 2022, 35(1):144-154.LI Bo,SUN Qing,LIU Zhuoyi, et al.Influence of ultrasonic rolling on corrosion resistance of 7075 aluminum alloy[J].China Surface Engineering, 2022, 35(1):144-154. [29] 李豪,吴凤和,赵夙,等. 超声波冲击技术对AA6061-T6空蚀行为的影响[J]. 中国表面工程, 2021, 34(3):83-89.LI Hao,WU Fenghe,ZHAO Su, et al.Effects of ultrasonic impact technology on cavitation erosion behavior of AA6061-T6[J]. China Surface Engineering, 2021, 34(3):83-89. [30] 王婷,王东坡,刘刚,等. 40Cr超声表面滚压加工纳米化[J]. 机械工程学报,2009,45(5):177-183. WANG Ting,WANG Dongpo,LIU Gang,et al. 40Cr nano-crystallization by ultrasonic surface rolling extrusion processing[J]. Journal of Mechanical Engineering,2009,45(5):177-183. [31] 朱有利,王燕礼,边飞龙,等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报,2014,50(20):35-45. ZHU Youli,WANG Yanli,BIAN Feilong,et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. Journal of Mechanical Engineering,2014,50(20):35-45. [32] LIU J,YE C,DONG Y. Recent development of thermally assisted surface hardening techniques:A review[J]. Advances in Industrial and Manufacturing Engineering,2021,2:100006. [33] 陈福泰,张永信,吕晓春,等. 45CrNiMoVA钢动态断裂韧度的测定[J]. 兵器材料科学与工程,1990(1):38-42. CHEN Futai,ZHANG Yongxin,LÜ Xiaochun,et al. Determination of dynamic fracture toughness of 45CrNiMoVA steel[J]. Ordnance Material Science and Engineering,1990(1):38-42. [34] LIU Y,ZHAO X,WANG D. Effective FE model to predict surface layer characteristics of ultrasonic surface rolling with experimental validation[J]. Materials Science and Technology,2014,30(6):627-636. [35] 姚喆赫. 超声能场在金属微/介观成形中的作用理论及实验研究[D]. 杭州:浙江大学,2016. YAO Zhehe. Theories and experimental studies on effects of ultrasonic energy field in micro/meso metal forming[D]. Hangzhou:Zhejiang University,2016. [36] LIAO Z,POLYAKOV M,DIAZ O G,et al. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation-Mechanical machining case[J]. Acta Materialia,2019,180:2-14. [37] WU X,JIANG P,CHEN L,et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences,2014,111(20):7197-7201. [38] DANG J,ZHANG H,AN Q,et al. Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process[J]. Journal of Manufacturing Processes,2021,61:1-14. [39] REN J,XU Y,ZHAO X,et al. Dynamic mechanical behaviors and failure thresholds of ultra-high strength low-alloy steel under strain rate 0.001/s to 106/s[J]. Materials Science and Engineering:A,2018,719:178-191. [40] HALL E. The deformation and ageing of mild steel:III discussion of results[J]. Proceedings of the Physical Society. Section B,1951,64(9):747-753. [41] GHOMI H,ODESHI A. The effects of microstructure,strain rates and geometry on dynamic impact response of a carbon-manganese steel[J]. Materials Science and Engineering:A,2012,532:308-315. [42] MCQUEEN H,JONAS J. Recovery and recrystallization during high temperature deformation[M]//ARSENAULT R J. Treatise on Materials Science & Technology. Elsevier,1975:393-493. [43] WEI H,LIU G,XIAO X,et al. Characterization of hot deformation behavior of a new microalloyed C-Mn-Al high-strength steel[J]. Materials Science and Engineering:A,2013,564:140-146. |