[1] FALCON-CARDONA J G,COELLO C A C. Indicator-based multi-objective evolutionary algorithms:A comprehensive survey[J]. ACM Computing Surveys,2020,53(2):1-35. [2] ZHANG Le,LI Tian,ZHANG Jiye,et al. Optimization on the crosswind stability of trains using neural network surrogate model[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-17. [3] JIANG Zhipeng,GAO Dong,LU Yong,et al. Optimization of cutting parameters for trade-off among carbon emissions,surface roughness,and processing time[J]. Chinese Journal of Mechanical Engineering,2019,32(1):1-18. [4] 张阳,吴宝海,夏卫红,等. 变切深工况下恒定切削力约束的多目标进给量优化方法[J]. 机械工程学报,2021,57(5):242-250. ZHANG Yang,WU Baohai,XIA Weihong,et al. Multi-objective feed optimization with constant cutting force constraints under variable cutting depth[J]. Journal of Mechanical Engineering,2021,57(5):242-250. [5] JIN Yaochu,MIETTINEN K,ISHIBUCHI H. Guest editorial evolutionary many-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2018,22(1):1-2. [6] EIBEN A E,SMITH J. From evolutionary computation to the evolution of things[J]. Nature,2015,521:476-482. [7] ZHU Guangyu,DING Chen,ZHANG Weibo. Optimal foraging algorithm that incorporates fuzzy relative entropy for solving many-objective permutation flow shop scheduling problems[J]. IEEE Transactions on Fuzzy Systems,2020,28(11):2738-2746. [8] CHAMPASAK P,PANAGANT N,PHOLDEE N,et al. Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle[J]. Aerospace Science and Technology,2020,100:105783. [9] CAO Bin,DONG Weinan,LÜ Zhihan,et al. Hybrid microgrid many-objective sizing optimization with fuzzy decision[J]. IEEE Transactions on Fuzzy Systems,2020,28(11):2702-2710. [10] 蔡敢为,黄一洋,田军伟,等. 一种新型正铲液压挖掘机工作机构的研究[J]. 机械工程学报,2021,57(13):132-143. CAI Ganwei,HUANG Yiyang,TIAN Junwei,et al. Research on a new working mechanism of face-shovel hydraulic excavator[J]. Journal of Mechanical Engineering,2021,57(13):132-143. [11] 徐弓岳,丁华锋,孙玉玉. 基于改进非支配排序遗传算法的正铲挖掘机工作装置优化设计[J]. 机械工程学报,2016,52(21):35-43. XU Gongyue,DING Huafeng,SUN Yuyu. Optimization of face-shovel excavator's attachment based on improved NSGA-II[J]. Journal of Mechanical Engineering,2016,52(21):35-43. [12] YANG Shuanqiang,HUANG Xinlong,SHEN Zhenhui,et al. Knowledge-based structure optimization design for boom of excavator[J]. Mathematical Problems in Engineering,2021(1):8869758. [13] BI Qiushi,WANG Guoqiang,WANG Yongpeng,et al. Digging trajectory optimization for cable shovel robotic excavation based on a multi-objective genetic algorithm[J]. Energies,2020,13(12):3118. [14] 张先萌,李翔龙,王友国. 基于响应面法的反铲液压挖掘机工作装置多目标优化设计[J]. 机械强度,2019,41(3):659-665. ZHANG Xianmeng,LI Xianglong,WANG Youguo. Multi-objective optimization design of backhoe hydraulic excavator working device based on response surface methodology[J]. Journal of Mechanical Strength,2019,41(3):659-665. [15] ZOU Zhihong,PANG Xiaoping,CHEN Jin. Comprehensive theoretical digging performance analysis for hydraulic excavator using convex polytope method[J]. Multibody System Dynamics,2019,47(2):137-164. [16] XU Gongyue,DING Huafeng,FENG Zemin. Optimal design of hydraulic excavator shovel attachment based on multiobjective evolutionary algorithm[J]. IEEE/ASME Transactions on Mechatronics,2019,24(2):808-819. [17] HUANG Peng,DING Huafeng,YANG Wenjian,et al. Connectivity calculation-based automatic synthesis of planar multi-loop mechanisms[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2021,13(4):041004. [18] 曹宇. 新型正铲挖掘机构的构型和设计方法[D]. 秦皇岛:燕山大学,2014. CAO Yu. Structural synthesis and design of new face-shovel excavator mechanism[D]. Qinhuangdao:Yanshan University,2014. [19] 马利. 新型正铲挖掘机的动力学分析及虚拟样机参数化研究[D]. 秦皇岛:燕山大学,2015. MA Li. Dynamic analysis and parametric research on virtual prototype of new face-shovel excavator[D]. Qinhuangdao:Yanshan University,2015. [20] 丁华锋,曹宇,杨真真,等. 基于D-H法的多连杆正铲挖掘机运动学分析与包络图绘制[J]. 燕山大学学报,2014,38(3):197-203. DING Huafeng,CAO Yu,YANG Zhenzhen,et al. Position kinematics analysis of multi-linkage face-shovel excavator and envelope plotting using D-H method[J]. Journal of Yanshan University,2014,38(3):197-203. [21] 陈国俊. 液压挖掘机[M]. 武汉:华中科技大学出版社,2011. CHEN Guojun. Hydraulic excavator[M]. Wuhan:Huazhong University of Science and Technology Press,2011. [22] 陈进,庞晓平. 单斗液压挖掘机工作装置关键技术研 究[M]. 北京:科学出版社,2014. CHEN Jin,PANG Xiaoping. Key technology research of single bucket hydraulic excavator's working attachment[M]. Beijing:Science Press,2014. [23] JAIN H,DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach,part II:Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation,2014,18(4):602-622. [24] PAN Linqiang,XU Wenting,LI Lianghao,et al. Adaptive simulated binary crossover for rotated multi-objective optimization[J]. Swarm and Evolutionary Computation,2021,60:100759. [25] TIAN Ye,XIANG Xiaoshu,ZHANG Xingyi,et al. Sampling reference points on the pareto fronts of benchmark multi-objective optimization problems[C]//Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Rio de Janeiro,Brazil:IEEE,2018:1-6. [26] HUBAND S,HINGSTON P,BARONE L,et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation,2006,10(5):477-506. [27] LIU Zhizhong,WANG Yong. Handling Constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation,2019,23(5):870-884. [28] ZITZLER E,THIELE L,LAUMANNS M,et al. Performance assessment of multiobjective optimizers:An analysis and review[J]. IEEE Transactions on Evolutionary Computation,2003,7(2):117-132. [29] TIAN Ye,CHENG Ran,ZHANG Xingyi,et al. PlatEMO:A MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine,2017,12(4):73-87. [30] LIU Chao,ZHAO Qi,YAN Bai,et al. Adaptive sorting-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2019,23(2):247-257. [31] TIAN Ye,ZHANG Tao,XIAO Jianhua,et al. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation,2021,25(1):102-116. [32] MING Mengjun,TRIVEDI A,WANG Rui,et al. A dual-population-based evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2021,25(4):739-753. [33] TIAN Ye,ZHANG Yajie,SU Yansen,et al. Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization[J]. IEEE Transactions on Cybernetics,2020(8):1. [34] JIAO Ruwang,ZENG Sanyou,LI Changhe,et al. Handling constrained many-objective optimization problems via problem transformation[J]. IEEE Transactions on Cybernetics,2021,51(10):4834-4847. [35] LIU Zhizhong,WANG Yong,WANG Bingchuan. Indicator-based constrained multiobjective evolutionary algorithms[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,51(9):5414-5426. [36] ZHOU Yalan,ZHU Min,WANG Jiahai,et al. Tri-goal evolution framework for constrained many-objective optimization[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(8):3086-3099. [37] CHENG Ran,LI Miqing,TIAN Ye,et al. A Benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems,2017,3(1):67-81. [38] WOLPERT D H,MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82. [39] JOYCE T,HERRMANN J M. A review of no free lunch theorems,and their implications for metaheuristic optimisation[M].. Springer International Publishing,2018. [40] BEHZADIAN M,OTAGHSARA S K,YAZDANI M,et al. A state-of the-art survey of TOPSIS applications[J]. Expert Systems with Applications,2012,39(17):13051-13069. [41] ZHANG Xingyi,TIAN Ye,CHENG Ran,et al. An efficient approach to nondominated sorting for evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2015,19(2):201-213. |