机械工程学报 ›› 2022, Vol. 58 ›› Issue (22): 334-348.doi: 10.3901/JME.2022.22.334
张强1, 张可墨1, 刘继奎1, 曲强1, 蒋俊1, 李睿2
收稿日期:
2022-03-05
修回日期:
2022-11-05
出版日期:
2022-11-20
发布日期:
2023-02-07
通讯作者:
张强(通信作者),男,1978年出生,博士,研究员。主要研究方向为航天器执行机构技术和驱动机构技术。E-mail:zhang007qiang@163.com
作者简介:
张可墨,女,1990年出生,硕士,工程师。主要研究方向为航天器驱动机构及其电传输技术。E-mail:240566250@qq.com
ZHANG Qiang1, ZHANG Ke-mo1, LIU Ji-kui1, QU Qiang1, JIANG Jun1, LI Rui2
Received:
2022-03-05
Revised:
2022-11-05
Online:
2022-11-20
Published:
2023-02-07
摘要: 空间导电滑环是通过弹性电刷在导电环道内的滑动电接触来实现航天器连续转动部分和相对固定部分间传输电功率和电信号的关键部件,目前工程上对空间服役环境下导电滑环磨损量、摩擦力矩波动、接触电阻及电噪声等方面性能表现不稳定尚缺乏有效解决方法。空间导电滑环技术研究涉及材料、机械、物理、化学、空间环境等多学科概念及理论,通过梳理导电滑环近些年来的研究热点和难点,发现其性能实现与接触表面粗糙度、材料硬度、电刷压力、耐磨性、抗疲劳性、耐腐蚀性、真空下的自润滑、微重力环境等相关。目前对空间导电滑环电接触表面的微观特征及其演化过程、滑动电接触的磨损机制及磨屑运动路径和电传输性能及其控制方面的研究还存在不足,现有的知识储备和技术储备不足以支撑在轨更长寿命、更高可靠、更稳定运行的空间导电滑环研制,亟需提高对导电滑环在空间极端工况及多场耦合条件下相关特性的科学认识,以期为保障航天器在轨安全运行提供更多的理论指导和技术支持。
中图分类号:
张强, 张可墨, 刘继奎, 曲强, 蒋俊, 李睿. 空间导电滑环技术研究与发展综述[J]. 机械工程学报, 2022, 58(22): 334-348.
ZHANG Qiang, ZHANG Ke-mo, LIU Ji-kui, QU Qiang, JIANG Jun, LI Rui. Overview of Research and Development on Space Slip Rings[J]. Journal of Mechanical Engineering, 2022, 58(22): 334-348.
[1] 邢立华,卢锦明,李耀娥,等.空间用精密导电滑环的研制[J].导航与控制,2015,14(1):59-64.XING Lihua,LU Jinming,LI Yaoe,et al.Research on the precision conductive slip-ring in space[J]. Navigation and Control,2015,14(1):59-64. [2] HOLM R. Electrical contacts:Theory and applications,4thed[M]. New York:Springer,1967. [3] DAMON D P. Slip ring experience in long duration space applications[C/CD]//The 20th Aerospace Mechanics Symposium,Cleveland,USA,May 7,1986. [4] MONDIER J B,SIROU F,MAUSLI P A. Life test of the scarab instrument slipring units[C]//Proceedings of European Space Mechanisms&Tribology Symposium,Liege,Begium,Sept 19-21,2001,480:99-106. [5] ZHANG D R,JIN D. Slip-ring failure mechanism analysis and solution of airborne platform inertial navigation system[J]. Journal of Chinese Inertial Technology,2010,18(6):645-647. [6] HOLZAPFEL C. Wear and electrical properties of slip rings[C/CD]//The 26th International Conference on Electrical Contacts,Beijing,China,May 14-17,2012. [7] ZHANG J C,MA X B,CHENG B,et al. Storage life modeling and analysis for contacting slip ring based on physics of failure[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2017,7(12):1969-1980. [8] GLENN D. Fretting possibility in slip rings:A review[C]//Proceedings of IEEE Holm Conference on Electrical Contacts,Denver,USA,Sept 10-13,2017. [9] LEWIS N E,COLE S R,GLOSSBRENNER E W,et al.Friction,wear,and noise of slip ring and brush contacts for synchronous satellite use[J]. IEEE Transactions on Parts,Hybrids and Packaging,2003,9(1):15-22. [10] MCBRIDE J W. Developments in fretting studies applied to electrical contacts[C/CD]//Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts,Montreal,Canada,Sep. 25-27,2006. [11] DEVINE E J. Rolling element slip rings for vacuum application[R]. NASA Technical Note, NASA TN D-2261. [12] NORRIS E L,STEPHEN R C,GLOSSBRENNER E W.The synergistic effects of slip ring-brush design and materials[R]. NASA Technical Note,NASA N75-20407. [13] 史亮,柳青,陈益峰,等.太阳帆板驱动机构内带电效应试验[J].空间科学学报,2017,37(3):344-349.SHI Liang,LIU Qing,CHEN Yifeng,et al. Experimental research on solar array drive assembly internal charging effects[J]. Chinese Journal of Space Science,2017,37(3):344-349. [14] 刘继奎,张可墨,柳青,等.航天器大功率传输介质深层充放电试验研究[J].高电压技术,2018,44(3):864-869.LIU Jikui,ZHANG Kemo,LIU Qing,et al.Internal charging and discharging tests of large power transfer dielectric on spacecraft[J]. High Voltage Engineering,2018,44(3):864-869. [15] 李睿,刘继奎,徐跃民,等.太阳帆板驱动机构的表面充放电效应研究[J].空间科学学报,2014,34(3):360-366.LI Ri,LIU Jikui,XU Yueming,et al.Study of surface charging and discharging effects on solar array drive assembly[J]. Chinese Journal of Space Science,2014,34(3):360-366. [16] 李刚,高莉,魏大忠,等. 200 Nms控制力矩陀螺用圆柱型导电环寿命试验[J].空间控制技术与应用,2012,38(2):49-52.LI Gang,GAO Li,WEI Dazhong,et al.Life test of conductive slip ring used for 200 N·m·s control moment gyro[J]. Aerospace Contrd and Application,2012,38(2):49-52. [17] GREENWOOD J A,TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceeding of the Institution of Mechanical Engineers,1970,185(48/71):625-633. [18] SLADE P G. Electrical contacts:Principles and applications[M]. Boca Raton,FL,USA:CRC Press,1999. [19] BRAUNOVIC M,KONCHITS V V,MYSHKIN N K.Electrical contacts:Fundamentals, applications and technology[M]. Boca Raton,FL,USA:CRC Press,2006. [20] CIAVARELLA M,MUROLO G,DEMELIO G. The electrical/thermal conductance of rough surfaces-the Weierstrass-Archard multiscale model[J]. International Journal of Solids and Structures,2004,41(15):4107-4120. [21] GREENWOOD J A. Constriction resistance and the real area of contact[J]. British Journal of Applied Physics,1966,17(12):1621-1632. [22] KOGUT L, KOMVOPOULOS K. Electrical contact resistance theory for conductive rough surfaces[J]. Journal of Applied Physics,2003,94(5):3153-3162. [23] NAKAMURA M,MINOWA I. Computer simulation for the conductance of a contact interface[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1986,9(2):150-155. [24] NAKAMURA M. Constriction resistance of conducting spots by the boundary element method[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1993,16(3):339-344. [25] LAVERS J D,TIMSIT R S. Effect of signal frequency on constriction resistance[C]//Proceedings of the 47th IEEE Holm Conference on Electrical Contacts,Montreal,Canada,Sept 10-12,2000:29-34. [26] GREENWOOD J A,WILLIAMSON J B P. Electrical conduction in solids.2.Theory of temperature dependent conductors[J]. Proceedings of the Royal Society A Mathematical Physical&Engineering Sciences,1958,246(1244):13-31. [27] MALUCCI R D. High frequency considerations for multi-point contact interfaces[J]. Electrical Contacts-IEEE,2000,1(1):175-185. [28] BANSAL D G,STREATOR J L. Influence of surface roughness on friction and contact resistance in sliding electrical contacts[C/CD]//Proceedings of ASME/STLE2007 International Joint Tribology Conference, San Diego,USA,Oct 22-24,2007. [29] SUTYAGIN O V. Estimation of characteristics of contact between rough surfaces, one of which has solid lubricating coating[J]. Journal of Friction and Wear,2014,35(3):242-249. [30] MYSHKIN N K. Friction transfer film formation in boundary lubrication[J]. Wear,2000,245(1-2):116-124. [31] KONCHITS V V,KIM C K. Electric current passage and interface heating[J]. Wear,1999,232(1):31-40. [32] SIMMONS J G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film[J]. Journal of Applied Physics,2004,34(9):2581-2590. [33] MYSHKIN N K,KONCHITS V V. Evaluation of the interface at boundary lubrication using the measurement of electric conductivity[J]. Wear,1994,172(1):29-40. [34] 大森丰明.电接触材料手册[M].北京:机械工业出版社,1987.DA-SEN Fengming. Handbook of electrical contact materials[M]. Beijing:China Machine Press,1987. [35] HERMANCE H W,EGAN T F. Organic depositions on precious metal contacts[J]. Bell System Technical Journal,1958,37(3):739-777. [36] ANTLER M,DROZDOWICZ M H,HORNING C F.Corrosion resistance of worn tin-nickel and gold-coated tin-nickel alloy electrodeposits[J]. Journal of The Electrochemical Society,1977,124(7):1069-1071. [37] LONG T R, BRADFORD K F. Contact resistance behavior of the 60Pd40Ag alloy in tarnishing environments[J]. IEEE Transactions on Parts Hybrids and Packaging,1976,12(1):29-33. [38] ANTLER M. Contact resistance of tin-nickel electrodeposits[J]. Journal of the Electrochemical Society,1978,125(3):420-428. [39] ANTLER M,DROZDOWICZ M H,HAQUE C A.Connector contact material:Effect of environment on clad palladium, palladium-silver alloys and gold electrodeposits[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1981,4(4):482-492. [40] HOLZAPFEL C, HEINBUCH P, HOLL S. Sliding electrical contacts:Wear and electrical performance of noble metal contacts[C]//Proceedings of the 56th IEEE Holm Conference on Electrical Contacts,Charleston,USA,Oct 4-7,2010:543-550. [41] ANTLER M. Tribological properties of gold for electric contacts[J]. IEEE Transactions on Parts Hybrids and Packaging,1973,9(1):4-14. [42] BARON J P,ARCHAMBAULT C,GUINEMENT J,et al. Search for test simulating the environment of industrial atmospheres for contacts and connections[J]. IEEE Transactions on Components Hybrids and Manufacturing Technology,1979,2(3):343-350. [43] GEORGES C,SANCHEZ H,SEMMAR N,et al. Laser treatment for corrosion prevention of electrical contact gold coating[J]. Applied Surface Science,2002,186(1-4):117-123. [44] 王鹚,姚日剑,王先荣,等.滑环表面污染物分析研究[C/CD]//中国空间技术研究院第二届空间材科及其应用技术学术交流会,北京,2009.WANG Yi,YAO Rijian,WANG Xianrong,et al. Analysis and research on the surface contamination of slip ring[C/CD]//The Second Symposium on Space Materials and its Application Technology of China Academy of Space Technology,Beijing,April 1,2019. [45] ANTLER M. Sliding wear of metallic contacts[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1981,4(1):15-29. [46] MYSHKIN N K,BRAUNOVICH M,KONCHITS V V.The mechanics and tribophysics of electrical contacts[J].Journal of Friction and Wear,2015,36(6):454-467. [47] SIDOROV O A,PHILIPPOV V M,STUPAKOV S A.Studies of the electromechanical wear of contact pairs in the current collection devices of electric transports[J].Journal of Friction and Wear,2015,36(5):390-394. [48] SHUGUROV A R,PANIN A V,LYAZGIN A O,et al.Wear of electroplated gold-based coatings[J]. Physical Mesomechanics,2016,19(4):407-419. [49] POPE L E,PEEBLES D E,BARTON B M. Friction,wear and electrical contact resistance of precious metal alloys[J]. Tribology Transactions,1988,31(2):202-213. [50] ARCHARD J F. Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-990. [51] LILJESTRAND L G,SJOGREN L,REVAY L,et al. Wear resistance of electroplated nickel-hardened gold[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1985,8(1):123-128. [52] SHUGUROV A R,PANIN A V,LYAZGIN A O,et al.Wear of electroplated gold-based coatings[J]. Physical Mesomechanics,2016,19(4):407-419. [53] YASAR I,CANAKCI A,ARSLAN F. The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current[J]. Tribology International,2007,40(9):1381-1386. [54] HALL R D,ROBERGE R P. Carbon brush performance on slip rings[C]//2010 Annual Pulp&Paper Industry Technical Conference,San Antonio,USA,June 21-23,2010. [55] 刘军涛.导电滑环接触材料摩擦磨损特性研究[D].大连:大连理工大学,2013.LIU Juntao. Research on the friction and wear characteristics of contact materials for the conductive slip ring[D]. Dalian:Dalian University of Technology,2013. [56] 周千广.新型铜/石墨烯导电滑环的载流摩擦磨损研究[D].上海:东华大学,2016.ZHOU Guangqian. Research on tribological properties of novel copper/graphene slip ring with electric current[D].Shanghai:Donghua University,2016. [57] 王新平.空间滑动电接触材料的性能及其寿命增长研究[D].长沙:中南大学,2013.WANG Xinping. The properties and lifetime growth research of sliding electrical contact materials for space application[D]. Changsha:Central South University,2013. [58] MCBRIDE J W. Developments in fretting studies applied to electrical contacts[C]//Proceedings of the 52nd IEEE holm conference on Electrical Contacts, Montreal,Canada,Sept 25-27,2006:170-180. [59] KUBO S,KATO K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear,1998,216(2):172-178. [60] BOUCHOUCHA A,CHEKROUD S,PAULMIER D.Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel[J]. Applied Surface Science,2004,223(4):330-342. [61] MA W L,LU J J. Effect of sliding speed on surface modification and tribological behavior of copper-graphite composite[J]. Tribology Letters,2011,41(2):363-370. [62] 田磊.滑动摩擦条件下电弧的产生及其对载流摩擦磨损性能的影响[D].洛阳:河南科技大学,2012.TIAN Lei. The arc caused by the sliding friction effects on the tribological properties under electirc current[D].Luoyang:Henan University of Science and Technology,2012. [63] BOWDEN F P, WILLIAMSON J B P. Electrical conduction in solids. I. Influence of the passage of current on the contact between solids[J]. Proceedings of the Royal Society of London,Series A:Mathematical,Physical&Engineering Sciences,1958,246(1244):1-12. [64] BRAUNOVIC M. Effect of fretting on the contact resistance of aluminum with different contact materials[J].IEEE Transactions on Components, Hybrids and Manufacturing Technology,1979,2(1):25-31. [65] GAGNON D,BRAUNOVIC M. Fretting in copper to copper contacts under AC and DC current conditions[J].IEEE Transactions on Components and Packaging Technologies,2001,24(3):378-383. [66] KHOVANSKY V N,CHICHINADZE A V. Prediction of friction and wear of sliding contacts, based on generalizational theory of thermal dynamics and modelling of friction and wear of tribosystems[J].Meccanica,2001,36(6):641-649. [67] RABINOWICZ E, CHAN P. Wear of silver-graphite brushes against various ring materials at high-current densities[J]. IEEE Transactions on Components Hybrids and Manufacturing Technology,1980,3(2):288-291. [68] RABINOWICZ E. The temperature rise at sliding electrical contacts[J]. Wear,1982,78(1):29-37. [69] MARSHALL R A. The mechanism of current transfer in high current sliding contacts[J]. Wear,1976,37(2):233-240. [70] 张敏,凤仪.电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响[J].摩擦学学报,2005,25(4):328-332.ZHANG Ming,FENG Yi.Effect of electric current on the friction and wear behavior of carbon nanotubes-silvergraphite composite[J]. Tribology,2005,25(4):328-332. [71] CHEN Z, LIU P, VERHOEVEN J D, et al.Electrotribological behavior of Cu-15 vol.%Cr in situ composites under dry sliding[J]. Wear,1997,203-204:28-35. [72] CHEN Z,LIU P,VERHOEVEN J D,et al. Tribological behavior of Cu-20%Nb and Cu-15%Cr in situ composites under dry sliding conditions[J]. Wear,1996,199(1):74-81. [73] WILLIAMSON J B P,ALLEN N. Thermal stability in graphite contacts[J]. Wear,1982,78(1):39-48. [74] MYSHKIN N K,KONCHITS V V. Friction and wear of metal-composite electrical contacts[J]. Wear, 1992,158(1-2):119-140. [75] BRYANT M D. A particle ejection mechanism for brush wear[J]. IEEE Transactions on Components Hybrids and Manufacturing Technology,1991,14(1):71-78. [76] DOW T A,KANNEL J W. Thermomechanical effects in high current density electrical slip rings[J]. Wear,1982,79:93-105. [77] BROWN L,KUHLMANN W D,JESSER W. Testing and evaluation of metal fiber brush operation on slip rings and commutators[J]. IEEE Transactions on Components and Packaging Technologies. 2008,31(2):485-494. [78] ARGIBAY N, BARES J A, KEITH J H, et al.Copper-beryllium metal fiber brushes in high current density sliding electrical contacts[J]. Wear,2010,268(11-12):1230-1236. [79] HEATON C E,MCCARTHY S L. High cycle fretting corrosion studies on tin-coated contact materials[C]//Proceedings of the 47th IEEE Holm Conference on Electrical Contacts,Montreal,Canada,Sept 10-12,2001:209-214. [80] FEUSIER G, MLIUSLI P A, GASS V. Improved characteristics of slipring assemblies making use of gold on gold metallic contacts[C]//Proceedings of the 10th European Space Mechanisms and Tribology Symposium,San Sebastián,Spain,Sept 24-26,2003:169-175. [81] SJOHOLM M, MAUSLI P A, BONNER F, et al.Development and qualification of the international space station centrifuge slip ring assembly[C]//Proceedings of the 11th European Space Mechanisms and Tribology Symposium,Lucerne,Switzerland,Sept 21-23,2005:133-140. [82] MAUSLI P A,FEUSIER G,INGUIMBERT V. Arc phenomena in space environment and equipments(APSEE)[C/CD]//Proceedings of the 12nd European Space Mechanisms and Tribology Symposium,Liverpool,UK,Sept 19-21,2007:1-7. [83] KUBO S,KATO K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear,1998,216(2):172-178. [84] KUBO S,KATO K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International,1999,32(7):367-378. [85] NAGASAWA H,KATO K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear,1998,216(2):179-183. [86] HE D H,MANORY RR,GRADY N. Wear of railway contact wires against current collector materials[J]. Wear,1998,215(1):146-155. [87] HE D H,MANORY R,SINKIS H. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear,2000,239(1):10-20. [88] AZEVEDO C R F,SINATORA A. Failure analysis of a railway copper contact strip[J]. Engineering failure analysis,2004,11(6):829-841. [89] STEINBACH A E,SCALZO F A,PRESTON M T.Generator collector brush holder testing and design improvements[C/CD]//ASME 2016 Power Conference,Charlotte,USA,June 26-30,2016. [90] FINCKENOR M M. The materials on international space station experiment(MISSE):First results from MSFC investigations[C/CD]//44th AIAA Aerospace Sciences Meeting and Exhibit,Reno,USA,Jan 9-12,2006. [91] ROBINSON J A,EVANS C A,TATE J M,et al.International Space Station research-accomplishments and pathways for exploration and fundamental research[C/CD]//46th AIAA Aerospace Sciences Meeting and Exhibit,Reno,USA,Jan 7-10,2008. [92] EVANS C A,ROBINSON J A,TATE-BROWN J M.Research on the international space station-an overview[C/CD]//47th AIAA Aerospace Sciences Meeting,Orlando,USA,Jan 5-8,2009. [93] BURNS D,FINCKENOR M,HENRIE B. MISSE in the materials and processes technical information system(MAPTIS)[EB/OL]//2013,M13-2718. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140000657.pdf. [94] JAWORSKE D A,SIAMIDIS J. Overview of materials international space station experiment 7B[C/CD]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,Palm Springs,USA,May 4-7,2009. [95] FALCON E,WUNENBURGER R,EVESQUE P,et al.Cluster formation in a granular medium fluidized by vibrations in low gravity[J]. Physical Review Letters,1999,83(2):440-443. [96] EVESQUE P,ADJEMIAN F. Stress fluctuations and macroscopic stick-slip in granular materials[J]. The European Physical Journal E,2002,9(3):253-259. [97] ANTONY S J,HOYLE W,DING Y L,et al. Snapshots on some states of granular matter:billiard,gas,clustering,liquid,plastic,solid[J]. Antony S Granular Materials:Fundamentals and Applications, Royal Society of Chemistry,2004,29-62. [98] 厚美瑛.微重力环境的颗粒物质研究[J].科学(上海),2016,68(6):8-11.HOU Meiying.Study on granular matter in microgravity environment[J]. Science(Shanghai),2016,68(6):8-11. [99] ROBERTS E W. A review of sliding electrical contacts for space application[R]. NASA Technical Report,8225461R,1981. [100] VANDAMME E P,VANDAMME L K J. 1/f noise and its coherence as a diagnostic tool for quality assessment of potentiometers[J]. IEEE Transactions on Components,Packaging,and Manufacturing Technology:Part A,1994,17(3):436-445. [101] TANIGUCHI M,INOUE T,MANO K. Frequency spectrum of electrical sliding contact noise and its waveform model[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1985,8(3):366-371. [102] LYSONSKI R,HABERL J,DENTON L R,et al. Test system for measurement of noise and coefficient of friction as a screen for potential lubricants in sliding electrical contacts[C/CD]//36th IEEE Conference on Electrical Contacts, and the 15th International Conference on Electrical Contacts,Montreal,Canada,Aug 20-24,1990. [103] TSUCHIYA K, TAMAI T. Fluctuations of contact resistance in sliding contact[J]. Wear,1970,16(5):337-349. [104] TANIGUCHI M,INOUE T,MANO K. The frequency spectrum of electrical sliding contact noise and its waveform model[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1985,8(3):366-371. [105] KUHLMANN-WILSDORF D. Electrical fiber brushes-theory and observations[C/CD]//Proceedings of the 41st IEEE Holm Conference on Electrical Contacts,Montreal,Canada,Oct 2-4,1995. [106] ANTLER M. The lubrication of gold[J]. Wear,1963,6(1):44-65. [107] CHUDNOVSKY B H. Lubrication of electrical contacts[C/CD]//Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts,Chicago,USA,Sept 26-28,2005. [108] NEIJZEN J,GLASHORSTER J. Fretting corrosion of tin-coated electrical contacts[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1987,10(1):68-74. [109] ANTLER M. Fretting corrosion of solder-coated electrical contacts[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1984,7(1):129-138. [110] TIAN H,SAKA N,RABINOWICZ E. Fretting failure of electroplated sliding contacts[J]. Wear,1991,142(2):265-289. [111] GAGNON D, BRAUNOVIC M, MASOUNAVE J.Effect of fretting slip amplitude on the friction behavior of contact materials[C]//Proceedings of the 51st IEEE Holm Conference on Electrical Contacts,Chicago,USA,Sept 26-28,2005. [112] VAN DIJK P,KASSMAN-RUDOLPHI A,KLAFFKE D.Investigations on electrical contacts subjected to fritting motion[C]//Proceedings of the 21st International Conference on Electrical Contacts,Switzerland,Sept 9-12,2002:189-195. [113] HAYES R,MUMM E,GOTTHELF K. Electrical noise performance of gold-on-gold slip rings[C/CD]//Proceedings of the 43rd Aerospace Mechanisms Symposium,NASA Ames Research Center,May 4-6,2016. [114] STEVE K,SCOTT W. Lessons learned from the Windsat BAPTA design and on-orbit anomalies[C/CD]//Proceedings of the 38th Aerospace Mechanisms Symposium,Williamsburg,USA,May 19-21,2006. [115] ABDOLKHANI A,HU A P,COVIC G A,et al.Though-hole contactless slipring system based on rotating magnetic field for rotary applications[J]. IEEE Transactions on Industry Applications,2014,50(6):3644-3655. [116] ABDOLKHANI A,HU A P. A contactless slipring system based on axially traveling magnetic field[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(1):280-287. [117] PAPASTERGIOU K D, MACPHERSON D E.Contact-less transfer of energy by means of a rotating transformer[C/CD]//Proceedings of the IEEE International Symposium on Industrial Electronics,Dubrovnik,Croatia,June 20-23,2005. [118] SANTORO C, HAYES R, HERMAN J. Brushless slipring for high power transmission[C/CD]//AIAA SPACE 2009 Conference&Exposition,Pasadena,USA,Sept 14-17,2009. [119] JAMES S. Design and testing of a roll-ring for 234million revolutions of operation in space[C/CD]//Proceedings of the 18th European Space Mechanisms and Tribology Symposium,Munich,Germany,Sept 18-20,2019. [120] LI Shu,FENG Yi,YANG Xiting,et al. Structure and formation mechanism of surface film of Ag-MoS2 composite during electrical sliding wear[J]. Rare Metal Materials Engineering,2009,38(11):1881-1885. [121] 李庶.银基复合电接触材料滑动电摩擦磨损性能研究[D].合肥:合肥工业大学,2009.LI Shu. Study on the sliding electrical friction and wear properties of silver based composite electrical contact materials[D]. Hefei:Hefei University of Technology,2009. [122] SONG H,JI L,LI H,et al. Self-forming oriented layer slip and macroscale super-low friction of graphene[J].Applied Physics Letters, 2017, 110(7):073101.1-073101.3. [123] RUDOLPHIÅK,JACOBSON S. On the use of ceramic PVD coatings to replace metallic coatings in electrical contacts[J]. Surface and Coatings Technology,1997,89(3):270-278. [124] LEWIN E, ANDRÉB, URBONAITE S, et al.Synthesis, structure and properties of Ni-alloyed TiCx-based thin films[J]. Journal of Materials Chemistry,2010,20(28):5950-5960. [125] GRANDIN M, WIKLUND U. Wear and electrical performance of a slip-ring system with silver-graphite in continuous sliding against PVD coated wires[J]. Wear,2016(348-349):138-147. [126] XIAO J K,LIU L M,ZHANG C,et al. Sliding electrical contact behavior of brass fiber brush against coin-silver and Au plating[J]. Wear,2016(368-369):461-469. [127] LUO B,LIU C,LIU X,et al. Effect of Expanded graphite on the tribological behavior of tin-bronze fiber brushes sliding against brass[J]. Tribology Transactions,2020,63(1):1-8. [128] SAKA N,LIOU M J,SUH N P. The role of tribology in electrical contact phenomena[J]. Wear,1984,100(1-3):77-105. |
[1] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[2] | 郑开魁, 赵信哲, 牟刚, 任志英. 超声波滚压强化TC11钛合金的表面质量与摩擦磨损性能[J]. 机械工程学报, 2024, 60(9): 137-151. |
[3] | 蹇文轩, 丛孟启, 雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展[J]. 机械工程学报, 2024, 60(8): 48-64. |
[4] | 刘水清, 付锦园, 沈骁, 韩旭. 点胶机器人撞针磨损建模与不确定性分析[J]. 机械工程学报, 2024, 60(7): 34-44. |
[5] | 王优强, 徐莹, 莫君, 何彦, 赵涛, 倪陈兵. 磁场作用下水基磁流体对TC4与Si3N4摩擦学性能影响的实验研究[J]. 机械工程学报, 2024, 60(7): 174-183. |
[6] | 陈守安, 肖科, 程功, 韩彦峰. 混合润滑下考虑表面形貌的齿面摩擦与接触特性[J]. 机械工程学报, 2024, 60(7): 184-194. |
[7] | 蒋鑫池, 卢纯, 莫继良, 陈孝婷, 张庆贺, 赵婧. 考虑磨损率随温度变化的列车制动摩擦块高温磨损仿真分析[J]. 机械工程学报, 2024, 60(7): 195-202. |
[8] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[9] | 张博楠, 黄辉, 武民. 单晶4H-SiC的摩擦诱导化学机械复合加工(FCMM)实验研究[J]. 机械工程学报, 2024, 60(7): 401-410. |
[10] | 魏永峭, 张晋, 王少江, 漆小虎, 郭瑞, 杨海江. 变双曲圆弧齿线圆柱齿轮传动界面磨损规律及敏感性分析[J]. 机械工程学报, 2024, 60(5): 81-94. |
[11] | 项载毓, 莫继良, 贺德强, 朱松, 翟财周, 杜利清. 基于三明治阻尼结构的高速列车制动摩擦振动噪声抑制[J]. 机械工程学报, 2024, 60(5): 196-208. |
[12] | 王丹丹, 黄伟迪, 张军辉, 赵守军, 于斌, 刘施镐, 吕飞, 苏琦, 徐兵. 基于边缘计算的轴向柱塞泵磨损状态辨识方法研究[J]. 机械工程学报, 2024, 60(4): 189-199. |
[13] | 纪佳馨, 彭程, 项冲, 黄乐, 郭飞. 考虑变速条件的斯特封磨损寿命预测方法[J]. 机械工程学报, 2024, 60(3): 191-202. |
[14] | 王伟, 魏春艳, 屈怡珅, 董少文, 吕凡凡, 金杰, 王快社. 黑磷烯量子点作为水基润滑添加剂的摩擦学性能研究[J]. 机械工程学报, 2024, 60(3): 226-237. |
[15] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||