[1] 鲁法云,杨平,孟利,等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析[J].金属学报,2013,49(1):1-9.LU Fayun,YANG Ping,MENG Li,et al. Microstructure,mechanical properties and crystallography analysis of Fe-22Mn TRIP/TWIP steel after tensile deformation[J].Acta Metallurgica Sinica,2013,49(1):1-9. [2] DE COOMAN B C, ESTRIN Y, KIM S K.Twinning-Induced plasticity(TWIP)steels[J]. Acta Materialia,2018,142(1):283-362. [3] GRÄSSEL O,KRÜGER L,FROMMEYER G,et al. High strength Fe-Mn-(Al,Si)TRIP/TWIP steels developmentproperties-application[J]. International Journal of Plasticity,2000,16(10):1391-1409. [4] ALLAIN S, CHATEAU J P, BOUAZIZ O, et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Materials Science and Engineering A,2004,387-389(24):158-162. [5] SONG W,INGENDAHL T,BLECK W. Control of strain hardening behavior in high-Mn austenitic steels[J]. Acta Metallurgica Sinica(English Letters),2014,27(3):546-556. [6] JIN J E,LEE Y K. Effects of Al on microstructure and tensile properties of C-Bearing high Mn TWIP steel[J].Acta Materialia,2012,60(4):1680-1688. [7] KOYAMA M,SAWAGUCHI T,TSUZAKI K. Effects of Si on tensile properties associated with deformationinduced ε-martensitic transformation in high Mn austenitic alloys[J]. Journal of the Japan Institute of Metals,2015,79(12):657-663. [8] CLADERA A,WEBER B,LEINENBACH C,et al.Iron-based shape memory alloys for civil engineering structures:An overview[J]. Construction and Building Materials,2014,63(14):281-293. [9] 罗云蓉,王清远,刘永杰,等. Q235、Q345钢结构材料的低周疲劳性能[J].四川大学学报,2012,44(2):169-175.LUO Yunrong,WANG Qingyuan,LIU Yongjie,et al.Low cycle fatigue properties of steel structure materials Q235 and Q345[J]. Journal of Sichuan University,2012,44(2):169-175. [10] KOYAMA M,YU Y,ZHOU J X,et al. Elucidation of the effects of cementite morphology on damage formation during monotonic and cyclic tension in binary low carbon Steels using in situ characterization[J]. Materials Science and Engineering A,2016,667(19):358-367. [11] SAWAGUCHI T, NIKULIN I, OGAWA K, et al.designing Fe-Mn-Si alloys with improved low-cycle fatigue lives[J]. Scripta Materialia,2015,99(6):49-52. [12] NIKULIN I, SAWAGUCHI T, OGAWA K, et al.Microstructure evolution associated with a superior low-cycle fatigue resistance of the Fe-30Mn-4Si-2Al alloy[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2015,46(11):5103-5113. [13] NIKULIN I,SAWAGUCHI T,TSUZAKI K. Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe-30Mn-(6-x)Si-XAl TRIP/TWIP alloys[J]. Materials Science and Engineering A,2013,587(29):192-200. [14] NIKULIN I,SAWAGUCHI T,OGAWA K,et al. Effect of γ to ε martensitic transformation on low-cycle Fatigue behaviour and fatigue microstructure of Fe-15Mn-10Cr-8Ni-xSi austenitic alloys[J]. Acta Materialia, 2016,105(4):207-218. [15] TAKAKI S,NAKATSU H,TOKUNAGA Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy[J]. Materials Transactions,JIM,1993,34(6):489-495. [16] NAKATSU H, MIYATA T, TAKAKI S. Effect of austenite grain size on the deformation induced γ→εmartensitic transformation and mechanical properties in an Fe-27 Mass%Mn alloy[J]. Journal of the Japan Institute of Metals,1996,60(10):936-943. [17] NAKATSU H, MIYATA T, TAKAKI S. Effect of austenite grain size on the γ→ε martensitic transformation and mechanical properties in an Fe-22 Mass%Mn alloy[J].Journal of the Japan Institute of Metals,1996,60(10):928-935. [18] WEN Y H,ZHANG W,LI N,et al. Principle and realization of improving shape memory effect in Fe-Mn-Si-Cr-Ni alloy through aligned precipitations of second-phase particles[J]. Acta Materialia,2007,55(19):6526-6534. [19] DONG Z Z,KAJIWARA S,KIKUCHI T,et al. Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe-15Mn-5Si-9Cr-5Ni-(0.5-1.5)NbC alloys[J]. Acta Materialia, 2005,53(15):4009-4018. [20] KAJIWARA S,LIU D,KIKUCHI T,et al. Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates[J].Scripta Materialia,2001,44(12):2809-2814. [21] LUTTEROTTI L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction[J]. Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2010,268(3-4):334-340. [22] GUO Z,KIMURA N,TAGASHIRA S,et al. Kinetics and crystallography of intragranular pearlite transformation nucleated at(MnS+VC)complex precipitates in hypereutectoid Fe-Mn-C Alloy[J]. ISIJ International,2002,42(9):1033-1041. [23] OLSON G B,COHEN M. A general mechanism of martensitic nucleation:Part I. General concepts and the FCC→HCP transformation[J]. Metallurgical Transactions A,1976,7(12):1897-1904. [24] LI X,CHEN L,ZHAO Y,et al. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity(TRIP)steel[J]. Materials Science and Engineering A,2018,715(7):257-265. [25] ONO Y,NAKATSU H,TAKAKI S. Effect of Nb C Particles on γ→ε martensitic transformation in Fe-22Mass%Mn alloys[J]. Journal of the Japan Institute of Metals,1997,61(7):580-585. |