[1] 向家伟. 数值模型驱动的传动系统故障个性化诊断原理[J]. 机械工程学报, 2021, 57(15):116-128. XIANG Jiawei. Numerical model driving personalized diagnosis principle for fault detection in mechanical transmission systems[J]. Journal of Mechanical Engineering, 2021, 57(15):116-128. [2] 苗宝权,陈长征,罗园庆,等. 基于自适应增强差分积形态滤波器的滚动轴承故障特征提取方法[J]. 机械工程学报, 2021, 57(9):78-88. MIAO Baoquan, CHEN Changzheng, LUO Yuanqing, et al. Rolling bearing fault feature extraction method based on adaptive enhanced difference product morphological filter[J]. Journal of Mechanical Engineering, 2021, 57(9):78-88. [3] JIANG Xingxing, SONG Qiuyu, WANG Haien, et al. Central frequency mode decomposition and its applications to the fault diagnosis of rotating machines[J]. Mechanism and Machine Theory, 2022, 174:104919. [4] JIANG Xingxing, WANG Jun, SHEN Changqing, et al. An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis[J]. Structural Health Monitoring, 2021, 20(5):2708-2725. [5] 崔玲丽,刘银行,王鑫. 基于改进奇异值分解的滚动轴承微弱故障特征提取方法[J/OL]. 机械工程学报, 2022. https://kns.cnki.net/kcms/detail/11.2187.TH.20220527.1733.097.html. CUI Lingli, LIU Yinhang, WANG Xin. Feature extraction of weak fault for rolling bearing based on improved singular value decomposition[J]. Journal of Mechanical Engineering, 2022. https://kns.cnki.net/kcms/detail/11.2187.TH.20220527.1733.097.html. [6] 孟宗,石颖,潘作舟,等. 自适应分块前向后向分段正交匹配追踪在重构滚动轴承故障信号中应用[J]. 机械工程学报, 2020, 56(9):91-101. MENG Zong, SHI Ying, PAN Zuozhou, et al. Fault diagnosis of rolling bearing based on adaptive block forward and backward stagewise orthogonal matching pursuit algorithm[J]. Journal of Mechanical Engineering, 2020, 56(9):91-101. [7] 王华庆,任帮月,宋浏阳,等. 基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J]. 机械工程学报, 2019, 55(7):35-43. WANG Huaqing, REN Bangyue, SONG Liuyang, et al. Sparse representation method based on termination criteria improved K-SVD dictionary learning for feature enhancemen[J]. Journal of Mechanical Engineering, 2019, 55(7):35-43. [8] 樊薇,李双,蔡改改,等. 瞬态成分Laplace小波稀疏表示及其轴承故障特征提取应用[J]. 机械工程学报, 2015, 51(15):110-118. FAN Wei, LI Shuang, CAI Gaigai, et al. Sparse representation for transients in laplace wavelet basis and its application in feature extraction of bearing fault[J]. Journal of Mechanical Engineering, 2015, 51(15):110-118. [9] JIA Xiaodong, ZHAO Ming, DI Yuan, et al. Investigation on the kurtosis filter and the derivation of convolutional sparse filter for impulsive signature enhancement[J]. Journal of Sound and Vibration, 2017, 386:433-448. [10] 周涛,赵明,郭栋,等. 基于信号子空间的新型盲解卷积方法[J]. 振动与冲击, 2022, 41(3):139-146. ZHOU Tao, ZHAO Ming, GUO Dong, et al. A new blind deconvolution method based on signal subspace[J]. Journal of Vibration and Shock, 2022, 41(3):139-146. [11] HURLEY N, RICKARD S. Comparing measures of sparsity[J]. IEEE Transactions on Information Theory, 2009, 55(10):4723-4741. [12] MIAO Yonghao, WANG Jingjing, ZHANG Boyao, et al. Practical framework of Gini index in the application of machinery fault feature extraction[J]. Mechanical Systems and Signal Processing, 2022, 165:108333. [13] NGIAM J, KOH P, CHEN Z, et al. Sparse filtering[C]//Advances in Neural Information Processing Systems. 2011:1125-1133. [14] LEI Yaguo, JIA Feng, LIN Jing, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63:3137-3147. [15] JIA Xiaodong, ZHAO Ming, DI Yuan, et al. Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 102:198-213. [16] ZHANG Zongzhen, LI Shunming, LU Jiantao, et al. A novel intelligent fault diagnosis method based on fast intrinsic component filtering and pseudo-normalization[J]. Mechanical Systems and Signal Processing,2020,145(1):106923. [17] ZHANG Zongzhen, LI Shunming, LU Jiantao, et al. Intrinsic component filtering for fault diagnosis of rotating machinery[J]. Chinese Journal of Aeronautics, 2021, 34(1):13. [18] YAN Ruqiang, LIU Yongbin, GAO R X. Permutation entropy:A nonlinear statistical measure for status characterization of rotary machines[J]. Mechanical Systems and Signal Processing, 2012, 29:474-484. [19] WANG Yi, XU Guanghua, LIANG Lin, et al. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 54-55:259-276. [20] 赵祥龙,陈捷,洪荣晶,等. 基于等距映射和最小二乘支持向量机的转盘轴承故障识别方法[J]. 轴承, 2020, 56(1):56-61. ZHAO Xianglong, CHEN Jie, HONG Rongjing, et al. Fault recognition method for slewing bearing based on isometric mapping and least squares support vector machine[J]. Bearing, 2020, 56(1):56-61. [21] SUN Chuang, WANG Peng, YAN Ruiqiang, et al. Machine health monitoring based on locally linear embedding with kernel sparse representation for neighborhood optimization[J]. Mechanical Systems and Signal Processing, 2019, 114:25-34. [22] 张鑫,郭顺生,李益兵,等. 基于拉普拉斯特征映射和深度置信网络的半监督故障识别[J]. 机械工程学报, 2020, 56(1):69-81. ZHANG Xin, GUO Shunsheng, LI Yibing, et al. Semi-supervised fault identification based on Laplacian eigenmap and deep belief networks[J]. Journal of Mechanical Engineering, 2020, 56(1):69-81. [23] 姜景升,王华庆,柯燕亮,等. 基于LTSA与K-最近邻分类器的故障诊断[J]. 振动与冲击, 2017, 36(11):134-139. JIANG Jingsheng, WANG Huaqing, KE Yanliang, et al. Fault diagnosis based on LTSA and K-Nearest neighbor classifier[J]. Journal of Vibration and Shock, 2017, 36(11):134-139. [24] WANG Jun, HE Qingbo. Wavelet packet envelope manifold for fault diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11):2515-2526. [25] DU Guifu, JIANG Tao, WANG Jun, et al. Improved multi-bandwidth mode manifold for enhanced bearing fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1):1-13. |