机械工程学报 ›› 2022, Vol. 58 ›› Issue (22): 19-36.doi: 10.3901/JME.2022.22.019
徐乐1,2, 邓忠伟1,2, 谢翌1,2, 胡晓松1,2
收稿日期:
2022-05-20
修回日期:
2022-10-12
出版日期:
2022-11-20
发布日期:
2023-02-07
通讯作者:
谢翌(通信作者),男,1983年出生,博士,副教授,博士研究生导师。主要研究方向为动力电池建模及管理、电池系统热管理技术。E-mail:claudexie@cqu.edu.cn
作者简介:
徐乐,男,1991年出生,博士研究生。主要研究方向为锂离子电池多物理场耦合建模、状态估计及寿命预测。E-mail:lexu@cqu.edu.cn
基金资助:
XU Le1,2, DENG Zhong-wei1,2, XIE Yi1,2, HU Xiao-song1,2
Received:
2022-05-20
Revised:
2022-10-12
Online:
2022-11-20
Published:
2023-02-07
摘要: 拥有高能量密度、低自放电率和长寿命的锂离子电池是电动车辆的主要储能单元,其性能直接影响了车辆的动力性和安全性。然而,锂离子电池是复杂的电化学系统,其内部状态具有时变性和不可观测性。此外,电池在使用过程中性能将不断衰减,将给车辆的安全性带来隐患。为保证电池在车用工况下的高效、安全和可靠运行,需要对电池实施有效管理。电池模型是管理算法的理论基础,参数辨识是模型应用的前提,而寿命预测是保证电池安全的关键技术。针对上述实际应用需求,综述了锂离子电池高精度电化学-热耦合机理建模、模型参数辨识和寿命预测的最新研究进展。重点关注宏观电化学模型中模型重构和模型简化两种模型降阶方法,对比分析参数辨识中试验测量和非拆解式辨识方法的特点,全面总结寿命预测中基于模型、基于数据驱动和融合式算法的算法架构。在此基础上,总结现有研究的不足并对未来研究方向提出展望。
中图分类号:
徐乐, 邓忠伟, 谢翌, 胡晓松. 锂离子电池高精度机理建模、参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022, 58(22): 19-36.
XU Le, DENG Zhong-wei, XIE Yi, HU Xiao-song. Review on Research Progress in High-fidelity Modeling, Parameter Identification and Lifetime Prognostics of Lithium-ion Battery[J]. Journal of Mechanical Engineering, 2022, 58(22): 19-36.
[1] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367. [2] 冯仕杰,刘韬,潘萨,等.基于分层优化的电动汽车有序充电策略[J].电气工程学报,2021,16(3):137-144.FENG Shijie,LIU Tao,PAN Sa,et al. Coordinated charging strategy for electric vehicles based on hierarchical optimization[J]. Journal of Electrical Engineering,2021,16(3):137-144. [3] 杜海忠,骆滔,宋浩谊,等.基于电压平衡的锂电池主动均衡电路及策略[J].电气工程学报,2021,16(3):145-151.DU Haizhong,LUO Tao,SONG Haoyi,et al. Active balancing circuit and strategy of Li-ion battery based on voltage balance[J]. Journal of Electrical Engineering,2021,16(3):145-151. [4] JOKAR A,RAJABLOO B,DÉSILETS M,et al. Review of simplified pseudo-two-dimensional models of lithium-ion batteries[J]. Journal of Power Sources,2016,327:44-55. [5] 高铭琨,徐海亮,吴明铂.基于等效电路模型的动力电池SOC估计方法综述[J].电气工程学报,2021,16(1):90-102.GAO Mingkun,XU Hailiang,WU Mingbo. Review of SOC estimation methods for power battery based on equivalent circuit model[J]. Journal of Electrical Engineering,2021,16(1):90-102. [6] 杨瑞鑫,熊瑞,孙逢春.锂离子动力电池外部短路测试平台开发与试验分析[J].电气工程学报,2021,16(1):103-118.YANG Ruixin, XIONG Rui, SUN Fengchun.Experimental platform development and characteristics analysis of external short circuit in lithium-ion batteries[J].Journal of Electrical Engineering,2021,16(1):103-118. [7] GALVEZ-ARANDA D E,PONCE V,SEMINARIO J M.Molecular dynamics simulations of the first charge of a Li-ion-Si-anode nanobattery[J]. Journal of Molecular Modeling,2017,23(4):120. [8] CHAN H L. A new battery model for use with battery energy storage systems and electric vehicles power systems[C]//IEEE Power Engineering Society Winter Meeting,2000:470-475. [9] SZUMANOWSKI A, CHANG Yunhua. Battery management system based on battery nonlinear dynamics modeling[J]. IEEE Transactions on Vehicular Technology,2008,57(3):1425-1432. [10] LEE J,NAM O,CHO B. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering[J]. Journal of Power Sources,2007,174:9-15. [11] HU Xiaosong,LI Shengbo,PENG Hui. A comparative study of equivalent circuit models for Li-ion batteries[J].Journal of Power Sources,2012,198:359-367. [12] VERBRUGGE M,TATE E. Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena[J]. Journal of Power Sources,2004,126(1):236-249. [13] DOYLE M,FULLER T,NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society,1993,140(6):1526-1533. [14] RENIERS J M,MULDER G,HOWEY D A. Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(14):A3189-A3200. [15] AI W,KRAFT L,STURM J,et al. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells[J]. Journal of the Electrochemical Society,2019,167(1):013512. [16] LI Jie, CHENG Yun, JIA Ming, et al. An electrochemical-thermal model based on dynamic responses for lithium iron phosphate battery[J]. Journal of Power Sources,2014,255:130-143. [17] LEUNG K,BUDZIEN J L. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium-ion battery graphitic anodes[J]. Physical Chemistry Chemical Physics,2010,12(25):6583-6586. [18] METHEKAR R N,NORTHROP P W C,CHEN Kejia,et al. Kinetic monte carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries:passive layer formation[J]. Journal of the Electrochemical Society,2011,158(4):A363. [19] QI Yue,GUO Haibo,HECTOR L G,et al. Threefold increase in the young's modulus of graphite negative electrode during lithium intercalation[J]. Journal of the Electrochemical Society,2010,157(5):A558. [20] SEAMAN A,DAO T S,MCPHEE J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation[J]. Journal of Power Sources,2014,256:410-423. [21] FULLER T F,DOYLE M,NEWMAN J. Simulation and optimization of the dual lithium-ion insertion cell[J].Journal of the Electrochemical Society,1994,141(1):1-10. [22] TORCHIO M, MAGNI L, GOPALUNI B, et al.LIONSIMBA:A Matlab framework based on a finite volume model suitable for li-ion battery design,simulation,and control[J]. Journal of the Electrochemical Society,2016,163(7):A1192-A1205. [23] SHEN Jie,TANG Tao,WANG Lilian. Spectral methods:Algorithms, analysis and applications[M]. Berlin:Springer,2011. [24] NORTHROP P,RAMADESIGAN V,DE S,et al.Coordinate transformation,orthogonal collocation,model reformulation and simulation of electrochemical-thermal behavior of lithium-ion battery stacks[J]. Journal of the Electrochemical Society,2011,158(12):A1461-A1477. [25] BIZERAY A M, ZHAO S, DUNCAN S R, et al.Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter[J]. Journal of Power Sources,2015,296:400-412. [26] CAI Long,WHITE R. Lithium-ion cell modeling using orthogonal collocation on finite elements[J]. Journal of Power Sources,2012,217:248-255. [27] SUBRAMANIAN V R,RITTER J A,WHITE R E.Approximate solutions for galvanostatic discharge of spherical particles I. Constant diffusion coefficient[J].Journal of the Electrochemical Society,2001,148(11):E444. [28] LUO Weilin, LIU Chao, WANG Lixin, et al. An approximate solution for electrolyte concentration distribution in physics-based lithium-ion cell models[J].Microelectronics Reliability,2013,53(6):797-804. [29] HAN Xuebing,OUYANG Minggao,LU Languang,et al.Simplification of physics-based electrochemical model for lithium-ion battery on electric vehicle. Part I:Diffusion simplification and single particle model[J]. Journal of Power Sources,2015,278:802-813. [30] HAN Xuebing,OUYANG Minggao,LU Languang,et al.Simplification of physics-based electrochemical model for lithium-ion battery on electric vehicle. Part II:Pseudo-two-dimensional model simplification and state of charge estimation[J]. Journal of Power Sources,2015,278:814-825. [31] LUO Weilin,LIU Chao,WANG Lixin,et al. A new extension of physics-based single particle model for higher charge-discharge rates[J]. Journal of Power Sources,2013,241:295-310. [32] DENG Zhongwei, YANG Lin, DENG Hao, et al.Polynomial approximation pseudo-two-dimensional battery model for online application in embedded battery management system[J]. Energy,2018,142:838-850. [33] SMITH K A,RAHN C D,WANG Chaoyang. Model order reduction of 1d diffusion systems via residue grouping[J].Journal of Dynamic Systems,Measurement,and Control,2008,130(1):011012. [34] LEE J L, CHEMISTRUCK A, PLETT G L.One-dimensional physics-based reduced-order model of lithium-ion dynamics[J]. Journal of Power Sources,2012,220:430-448. [35] RODRÍGUEZ A, PLETT G L, TRIMBOLI M S.Improved transfer functions modeling linearized lithium-ion battery-cell internal electrochemical variables[J]. Journal of Energy Storage, 2018, 20:560-575. [36] FORMAN J C,BASHASH S,STEIN J L,et al. Reduction of an electrochemistry-based li-ion battery model via quasi-linearization and Padéapproximation[J]. Journal of the Electrochemical Society,2011,158(2):A93. [37] BALA S,POPOV B,WHITE R. Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy[J]. Journal of Power Sources,1998,75(1):56-63. [38] ZHANG D,POPOV B,WHITE R. Modeling lithium intercalation of a single spinel particle under potentiodynamic control[J]. Journal of the Electrochemical Society,2000,147(3):831-838. [39] DI DOMENICO D,STEFANOPOULOU A,FIENGO G.Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter[J]. Journal of Dynamic Systems,Measurement,and Control,2010,132(6):061302. [40] PRADA E, DI DOMENICO D, CREFF Y, et al.Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications[J]. Journal of the Electrochemical Society,2012,159(9):A1508-A1519. [41] DAO T S, VYASARAYANI C P, MCPHEE J.Simplification and order reduction of lithium-ion battery model based on porous-electrode theory[J]. Journal of Power Sources,2012,198:329-337. [42] RENIERS J M,MULDER G,OBER-BLÖBAUM S,et al. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling[J]. Journal of Power Sources,2018,379:91-102. [43] MOURA S J,ARGOMEDO F B,KLEIN R,et al. Battery state estimation for a single particle model with electrolyte dynamics[J]. IEEE Transactions on Control Systems Technology,2017,25(2):453-468. [44] KHALEGHI R S,RAYMAN S,WHITE R E. Extension of physics-based single particle model for higher charge-discharge rates[J]. Journal of Power Sources,2013,224:180-194. [45] MARCICKI J,CANOVA M,CONLISK A T,et al. Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for SOC/SOH estimation[J]. Journal of Power Sources,2013,237:310-324. [46] TANIM T R,RAHN C D,WANG Chaoyang. State of charge estimation of a lithium-ion cell based on a temperature dependent and electrolyte enhanced single particle model[J]. Energy,2015,80:731-739. [47] YUAN Shifei,JIANG Lei,YIN Chengliang,et al. A transfer function type of simplified electrochemical model with modified boundary conditions and Padéapproximation for Li-ion battery:Part 2. Modeling and parameter estimation[J]. Journal of Power Sources,2017,352:258-271. [48] CHU Zhengyu,PLETT G L,TRIMBOLI M S,et al. A control-oriented electrochemical model for lithium-ion battery,Part I:Lumped-parameter reduced-order model with constant phase element[J]. Journal of Energy Storage,2019,25:100828. [49] 李平,安富强,张剑波,等.电动汽车用锂离子电池的温度敏感性研究综述[J].汽车安全与节能学报,2014,5(3):224-237.LI Ping,AN Fuqiang,ZHANG Jianbo,et al. Review on temperature sensitivity of lithium-ion batteries for electric vehicles[J]. Journal of Automobile Safety and Energy Conservation,2014,5(3):224-237. [50] FENG Xuning,OUYANG Minggao,LIU Xiang,et al.Thermal runaway mechanism of lithium-ion battery for electric vehicles:A review[J]. Energy Storage Materials,2018,10:246-267. [51] BASU S,HARIHARAN K S,KOLAKE S M,et al.Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J].Applied Energy,2016,181:1-13. [52] 刘岸晖,甘小燕,何佩芸,等.锂离子电池热模型的研究动态[J].电源学报,2019,17(1):95-103.LIU Anhui,GAN Xiaoyan,HE Peiyun,et al. Research on thermal model of lithium ion battery[J]. Journal of Chinese Power Sources,2019,17(1):95-103. [53] BOTTE G G,JOHNSON B A,WHITE R E. Influence of some design variables on the thermal behavior of a lithium-ion cell[J]. Journal of the Electrochemical Society,1999,146(3):914-923. [54] AL-HALLAJ S,MALEKI H,HONG J S,et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources,1999,83(1-2):1-8. [55] SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources,2001,99(1):70-77. [56] AL-HALLAJ S,SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle hybrid electric vehicle application[J]. Journal of Power Sources,2002,110(2):341-348. [57] ONDA K,OHSHIMA T,NAKAYAMA M,et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources,2006,158(1):535-542. [58] RICHARDSON R R, ZHAO Shi, HOWEY D A.On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries:Part II.State estimation via impedance-based temperature sensing[J]. Journal of Power Sources,2016,327:726-735. [59] WANG Zhenpo,MA Jun,ZHANG Lei. Finite element thermal model and simulation for a cylindrical Li-ion battery[J]. IEEE Access,2017,5:15372-15379. [60] SOLTANI M,RONSMANS J,JAGUEMONT J,et al. A three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution[C]//IEEE International Conference on Industrial Technology,2019:1126-1131. [61] LIU Huaqiang,WEI Zhongbao,HE Weidong,et al.Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J].Energy Conversion and Management,2017,150:304-330. [62] BERNARDI D,PAWLIKOWSKI E,NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society,1985,132(1):5-12. [63] CHACKO S,CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J].Journal of Power Sources,2012,213:296-303. [64] VALOEN L O,REIMERS J N. Transport properties of LiPF[sub 6] -based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society,2005,152(5):A882. [65] LIN Nan,XIE Xiangzhong,SCHENKENDORF R,et al.Efficient global sensitivity analysis of 3d multiphysics model for Li-ion batteries[J]. Journal of the Electrochemical Society,2018,165(7):A1169-A1183. [66] EDOUARD C,PETIT M,FORGEZ C,et al. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging[J]. Journal of Power Sources,2016,325:482-494. [67] PIANOSI F,BEVEN K,FREER J,et al. Sensitivity analysis of environmental models:A systematic review with practical workflow[J]. Environmental Modelling&Software,2016,79:214-232. [68] LI Weihan,CAO Decheng,JÖST D,et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J].Applied Energy,2020,269:115104. [69] ZHANG Liqian,LYU Chao,HINDS G,et al. Parameter sensitivity analysis of cylindrical LiFePO4 battery performance using multi-physics modeling[J]. Journal of the Electrochemical Society,2014,161(5):A762-A776. [70] DENG Zhongwei, DENG Hao, YANG Lin, et al.Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery[J]. Energy,2017,138:509-519. [71] FORMAN J C,MOURA S J,STEIN J L,et al. Genetic identification and fisher identifiability analysis of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 cell[J]. Journal of Power Sources,2012,210:263-275. [72] GRANDJEAN T,LI Liuying,ODIO M X,et al. Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte[C]//IEEE Vehicle Power and Propulsion Conference,2019:1-7. [73] DENG Zhongwei,HU Xiaosong,LIN Xianke,et al.Sensitivity analysis and joint estimation of parameters and states for all-solid-state batteries[J]. IEEE Transactions on Transportation Electrification,2021,7(3):1314-1323. [74] XU Le,LIN Xianke,XIE Yi,et al. Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification[J].Energy Storage Materials,2022,45:952-968. [75] CHEN Changhui,BROSA PLANELLA F,O'REGAN K,et al. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models[J]. Journal of the Electrochemical Society,2020,167(8):080534. [76] HUGGINS R A. Transient behavior of insertion reaction electrodes[J]. Solid State Ionics,1996,86-88(Part 1):41-48. [77] DEISS E. Spurious potential dependence of diffusion coefficients in Li+insertion electrodes measured with PITT[J]. Electrochemical Acta,2002,47(25):4027-4034. [78] HJELM A K, LINDBERGH G, LUNDQVIST A.Investigation of LiMn2O4 cathodes for use in rechargeable lithium batteries by linear sweep voltammetry:Part I.Theoretical study[J]. Journal of Electroanalytical Chemistry,2001,506(2):82-91. [79] ECKER M, TRAN T K D, DECHENT P, et al.Parameterization of a physico-chemical model of a lithium-ion battery[J]. Journal of the Electrochemical Society,2015,162(9):A1836-A1848. [80] HAYKIN S. Adaptive filter theory[M]. 3rd ed. New Jersey:Prentice-Hall,Inc.,1996. [81] HU Yuanbiao. Iterative and recursive least squares estimation algorithms for moving average systems[J].Simulation Modelling Practice and Theory,2013,34:12-19. [82] 刘艳莉,戴胜,程泽,等.基于有限差分扩展卡尔曼滤波的锂离子电池SOC估计[J].电工技术学报,2014,29(1):221-228.LIU Yanli,DAI Sheng,CHENG Ze,et al. SOC estimation of lithium-ion battery based on finite-difference extended Kalman filter[J]. Transactions of the China Electrotechnical Society,2014,29(1):221-228. [83] XIONG Rui,SUN Fengchun,GONG Xianzhi,et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles[J].Applied Energy,2014,113:1421-1433. [84] SALEEM K,MEHRAN K,ALI Z. Online reduced complexity parameter estimation technique for equivalent circuit model of lithium-ion battery[J]. Electric Power Systems Research,2020,185:106356. [85] WU Honglei,YUAN Shifei,ZHANG Xi,et al. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage[J]. Journal of Power Sources,2015,287:108-118. [86] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:Part 2. Modeling and identification[J]. Journal of Power Sources,2004,134(2):262-276. [87] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:Part 3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292. [88] PARTOVIBAKHSH M, LIU Guangjun. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots[J]. IEEE Transactions on Control Systems Technology,2015,23(1):357-363. [89] LI Yang,XIONG Binyu,VILATHGAMUWA D M,et al.Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries[J].IEEE Transactions on Industrial Informatics,2021,17(1):240-250. [90] SALEHI R, STEFANOPOULOU A. Parameter set reduction and ensemble Kalman filtering for engine model calibration[J]. Journal of Dynamic Systems,Measurement,and Control,2019,142(1):011007. [91] ZHANG Liqiang, WANG Lixin, HINDS G, et al.Multi-objective optimization of lithium-ion battery model using genetic algorithm approach[J]. Journal of Power Sources,2014,270:367-378. [92] KHAN M R,MULDER G,VAN MIERLO J. An online framework for state of charge determination of battery systems using combined system identification approach[J].Journal of Power Sources,2014,246:629-641. [93] RAHMAN M A, ANWAR S, IZADIAN A.Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method[J]. Journal of Power Sources,2016,307:86-97. [94] DEB K,PRATAP A,AGARWAL S,et al. A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [95] KIM M,CHUN Huiyong,KIM J,et al. Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search[J].Applied Energy,2019,254:113644. [96] CHUN Huiyong,KIM J,YU J,et al. Real-time parameter estimation of an electrochemical lithium-ion battery model using a long short-term memory network[J]. IEEE Access,2020,8:81789-81799. [97] REDDY S R,SCHARRER M K,PICHLER F,et al.Accelerating parameter estimation in Doyle-FullerNewman model for lithium-ion batteries[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2019,38(5):1533-1544. [98] BIRKL C R,ROBERTS M R,MCTURK E,et al.Degradation diagnostics for lithium-ion cells[J]. Journal of Power Sources,2017,341:373-386. [99] SARASKETA-ZABALA E, AGUESSE F,VILLARREAL I,et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps[J]. The Journal of Physical Chemistry C,2015,119(2):896-906. [100] WOOD E, ALEXANDER M, BRADLEY T H.Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles[J]. Journal of Power Sources,2011,196(11):5147-5154. [101] NEUBAUER J,PESARAN A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications[J].Journal of Power Sources,2011,196(23):10351-10358. [102] LIPU M S H,HANNAN M A,HUSSAIN A,et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles:Challenges and recommendations[J]. Journal of Cleaner Production,2018,205:115-133. [103] HU Xiaosong,XU Le,LIN Xianke,et al. Battery lifetime prognostics[J]. Joule,2020,4(2):310-346. [104] AYKOL M,GOPAL C B,ANAPOLSKY A,et al.Perspective-combining physics and machine learning to predict battery lifetime[J]. Journal of the Electrochemical Society,2021,168(3):030525. [105] RAMADASS P,HARAN B,GOMADAM P M,et al.Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society,2004,151(2):A196-A203. [106] NING G,WHITE R E,POPOV B N. A generalized cycle life model of rechargeable Li-ion batteries[J].Electrochemical Acta,2006,51(10):2012-2022. [107] RAMADESIGAN V,CHEN Kejia,BURNS N A,et al.Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models[J].Journal of the Electrochemical Society,2011,158(9):A1048. [108] LEUNG K. Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium-ion batteries[J]. The Journal of Physical Chemistry C,2013,117(4):1539-1547. [109] RÖDER F,BRAATZ R D,KREWER U. Multi-scale simulation of heterogeneous surface film growth mechanisms in lithium-ion batteries[J]. Journal of the Electrochemical Society,2017,164(11):E3335-E3344. [110] RÖDER F,BRAATZ R D,KREWER U. Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems[J].Computers&Chemical Engineering, 2019, 121:722-735. [111] ZHANG Lijun, MU Zhongqian, SUN Changyan.Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access,2018,6:17729-17740. [112] DUONG P L T,RAGHAVAN N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery[J]. Microelectronics Reliability,2018,81:232-243. [113] WANG Dong,YANG Fangfang,ZHAO Yang,et al.Battery remaining useful life prediction at different discharge rates[J]. Microelectronics Reliability,2017,78:212-219. [114] WALKER E,RAYMAN S,WHITE R E. Comparison of a particle filter and other state estimation methods for prognostics of lithium-ion batteries[J]. Journal of Power Sources,2015,287:1-12. [115] MIAO Qing,XIE Lei,CUI Hengjuan,et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability,2013,53(6):805-810. [116] WANG Dong,YANG Fangfang,TSUI K L,et al.Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter[J]. IEEE Transactions on Instrumentation and Measurement,2016,65(6):1282-1291. [117] NUHIC A,TERZIMEHIC T,SOCZKA-GUTH T,et al.Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J].Journal of Power Sources,2013,239:680-688. [118] LIU Kailong,LI Yan,HU Xiaosong,et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics,2020,16(6):3767-3777. [119] ZHOU Yangpeng,HUANG Miaohua,CHEN Yunpu,et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources,2016,321:1-10. [120] ZHANG Yunzhi,XIONG Rui,HE Hongwen,et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology,2018,67(7):5695-5705. [121] DONG Guangzhong,CHEN Honghai,WEI Jingwen,et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics,2018,65(11):8646-8655. [122] LONG Bing,XIAN Weiming,LIN Jiang,et al. An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries[J].Microelectronics Reliability,2013,53(6):821-831. [123] GU Weijun,SUN Zechang,WEI Xuezhe,et al. A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system[J]. Journal of Power Sources,2014,267:366-379. [124] SEVERSON K A,ATTIA P M,JIN N,et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy,2019,4(5):383-391. [125] LI Weihan, SENGUPTA N, DECHENT P, et al.One-shot battery degradation trajectory prediction with deep learning[J]. Journal of Power Sources,2021,506:230024. [126] HE Wei, WILLIARD N, OSTERMAN M, et al.Prognostics of lithium-ion batteries based on Dempster-shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources,2011,196(23):10314-10321. [127] SONG Yunchen, LIU Datong, YANG Cen, et al.Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery[J].Microelectronics Reliability,2017,75:142-153. [128] DONG Hancheng,JIN Xiaoning,LOU Yangbing,et al.Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources,2014,271:114-123. [129] ZHANG Xin,MIAO Qing,LIU Zhiwen. Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC[J].Microelectronics Reliability,2017,75:288-295. [130] YU Jianbo. State of health prediction of lithium-ion batteries:Multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering&System Safety,2018,17:82-95. [131] LI Xiaoyu, ZHANG Lei, WANG Zhenpo, et al.Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage,2019,21:510-518. [132] MA Guijun,ZHANG Yong,CHENG Cheng,et al.Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy,2019,253:113626. |
[1] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[2] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[3] | 纪佳馨, 彭程, 项冲, 黄乐, 郭飞. 考虑变速条件的斯特封磨损寿命预测方法[J]. 机械工程学报, 2024, 60(3): 191-202. |
[4] | 张伟, 李如俊, 葛士涛, 彭艳. 基于内禀耗散理论的高周疲劳双尺度伤演分析[J]. 机械工程学报, 2024, 60(20): 120-133. |
[5] | 刘小峰, 张天瑀, 韦代平, 柏林, 陈兵奎. 复合材料基体裂纹损伤演化的自适应粒子滤波预测[J]. 机械工程学报, 2024, 60(18): 32-42. |
[6] | 熊瑞, 李正阳, 燕润博, 杨瑞鑫. 全气候自热锂离子电池及低温极速加热策略研究[J]. 机械工程学报, 2024, 60(18): 247-257. |
[7] | 蒋帅, 陈铖, 段砚州, 熊瑞. 温度和老化影响下的锂离子电池荷电状态和健康状态联合估计方法研究[J]. 机械工程学报, 2024, 60(18): 266-275. |
[8] | 宗俊杰, 杨洋, 王朝董, 郑昱, 林闯, 杨斯钦, 广晨汉. 面向眼内手术的主操作器设计与零力控制方法研究[J]. 机械工程学报, 2024, 60(17): 63-71. |
[9] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[10] | 赵雷, 张利宾, 宋恺, 徐连勇, 韩永典, 郝康达. 新型马氏体耐热钢耦合控制下蠕变-疲劳循环变形研究[J]. 机械工程学报, 2024, 60(16): 118-129. |
[11] | 倪智宇, 李自森, 邬树楠, 吴晨晨. 基于姿态信号分布测量的空间太阳能电站惯性张量参数辨识[J]. 机械工程学报, 2024, 60(16): 209-221. |
[12] | 刘征宇, 张政, 郭乐凯, 孟辉, 刘项. 基于经验模态分解的锂离子电池健康状态预测[J]. 机械工程学报, 2024, 60(14): 272-281. |
[13] | 彭纪昌, 刘凯龙, 孟锦豪, 刘海涛. 基于变参数结构的锂离子电池建模方法[J]. 机械工程学报, 2024, 60(14): 298-305. |
[14] | 武骥, 方雷超, 刘兴涛, 陈佳佳, 刘晓剑, 吕帮. 基于特征优化和随机森林算法的锂离子电池SOH估计[J]. 机械工程学报, 2024, 60(12): 335-343. |
[15] | 朱挺, 陈兆祥, 周笛, 陈震, 胡兵, 潘尔顺. 基于Bayesian-LSTM神经网络的热轧轧辊剩余寿命预测及不确定性评估[J]. 机械工程学报, 2024, 60(11): 181-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||