[1] 吕福在, 项占琴, 程耀东, 等. 稀土超磁致伸缩材料高速强力电磁阀的研究[J]. 内燃机学报, 2000, 18(2):199-202. LÜ Fuzai, XIANG Zhanqin, CHENG Yaodong, et al. Research on high speed and powerful solenoid valve of rare earth giant magnetostrictive material[J]. Transactions of CSICE, 2000, 18(2):199-202. [2] 李明范, 项占琴, 吕福在, 等. 超磁致伸缩换能器磁路设计及优化[J]. 浙江大学学报, 2006, 40(2):192-196. LI Mingfan, XIANG Zhanqin, LÜ Fuzai, et al. Magnetic circuit design and optimization of giant magnetostrictive transducer[J]. Journal of Zhejiang University, 2006, 40(2):192-196. [3] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19):3-21. FENG Pingfa, WANG Jianjian, ZHANG Jianfu, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19):3-21. [4] 蔡万宠, 张建富, 郁鼎文, 等. 超磁致伸缩超声振动系统的机电转换效率研究[J]. 机械工程学报, 2017, 53(19):52-58. CAI Wanchong, ZHANG Jianfu, YU Dingwen, et al. Research on the electromechanical conversion efficiency for giant magnetostrictive ultrasonic machining system[J]. Journal of Mechanical Engineering, 2017, 53(19):52-58. [5] ZHU Yuchuan, JI Liang. Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator[J]. Sensors & Actuators A:Physical, 2014, 218(1):167-178. [6] MOONGKI C, WAKIKAWA H, YAJIMA H, et al. Power loss analysis by measuring temperature rise in T-GMA[J]. Japanese AEM, 2011, 19(3):503-508. [7] ZUCCA M, ROCCATO P E, BOTTAUSCIO O, et al. Analysis of losses in a magnetostrictive device under dynamic supply conditions[J]. IEEE Transactions on Magnetics, 2010, 46(2):183-186. [8] 陶孟仑, 陈定方, 卢全国, 等. 超磁致伸缩材料动态涡流损耗模型及试验分析[J]. 机械工程学报, 2012, 48(13):146-151. TAO Menglun, CHEN Dingfang, LU Quanguo, et al. Eddy current losses of giant magnetostrictors:modeling and experimental analysis[J]. Journal of Mechanical Engineering, 2012, 48(13):146-151. [9] LI P, LIU Q, ZHOU X, et al. Effect of Terfenol-D rod structure on vibration performance of giant magnetostrictive ultrasonic transducer[J]. Journal of Vibration and Control, 2021, 27(5-6):573-581. [10] KALETA J, LEWANDOWSKI D, MECH R. Magnetostriction of field-structural composite with Terfenol-D particles[J]. Archives of Civil & Mechanical Engineering, 2015, 15(4):897-902. [11] LIU H, GAO S, WANG H, et al. Study on eddy current loss characteristics of precision giant magnetostrictive actuator considering magnetic field distribution[J]. International Journal of Nanomanufacturing, 2019, 15(4):343-354. [12] 贾振元, 杨兴, 郭东明, 等. 超磁致伸缩材料微位移执行器的设计理论及方法[J]. 机械工程学报, 2001, 37(11):46-49. JIA Zhenyuan, YANG Xing, GUO Dongming, et al. Design theory and method of giant magnetostrictive micro-displacement actuator[J]. Journal of Mechanical Engineering, 2001, 37(11):46-49. [13] YAN Ming, ZHENG Peng, GAO Xiufeng, et al. Temperature field computation of giant magnetostrictive transducers[C]//Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering. Changchun, 2010:244-247. [14] ZHOU H, ZHANG J, YU D, et al. Advances in rotary ultrasonic machining system for hard and brittle materials[J]. Advances in Mechanical Engineering, 2019, 11(12):1-13. [15] 纪良. 超磁致伸缩电静液作动器温度场分布与热位移特性研究[D]. 南京:南京航空航天大学, 2016. JI Liang. Research on temperature field distribution and thermal deformation of giant magnetostrictive electro-hydrostatic actuator[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016. |