机械工程学报 ›› 2022, Vol. 58 ›› Issue (16): 224-237.doi: 10.3901/JME.2022.16.224
胡林1,2, 田庆韬1, 黄晶3, 叶瑶1, 伍贤辉4
收稿日期:
2021-09-28
修回日期:
2022-06-20
出版日期:
2022-08-20
发布日期:
2022-11-03
通讯作者:
黄晶(通信作者),女,1980年出生,副教授。主要研究方向为车辆电动化与智能化,损伤生物力学与交通安全。E-mail:huangjing926@hnu.edu.cn
作者简介:
胡林,男,1978年出生,教授,博士研究生导师。主要研究方向为车辆动力学控制与智能化、交通事故深入调查及预防。E-mail:hulin@csust.edu.cn
基金资助:
HU Lin1,2, TIAN Qingtao1, HUANG Jing3, YE Yao1, WU Xianhui4
Received:
2021-09-28
Revised:
2022-06-20
Online:
2022-08-20
Published:
2022-11-03
摘要: 锂离子电池与超级电容组合的混合储能系统(Hybrid energy storage system, HESS)通过超级电容补充输出峰值功率,有效解决了锂离子电池电动汽车在城市工况频繁启动和制动的大功率需求造成锂离子电池不可逆的容量衰减问题,但相比于单独使用动力电池,超级电容的加入增加了成本和重量并且降低了整个储能系统的输出效率。从能量分配策略和参数匹配两个方面论述了当前HESS的研究进展。目前能量分配策略的研究多采用燃油汽车的循环测试工况作为研究数据,依据在线运算能力及应用场景将能量分配策略分为离线控制和在线控制,前者依赖已知的能耗数据但能实现优化分配效果,而后者能实现在线实时分配但优化效果有限。参数匹配的研究由效率分析和策略匹配向基于能量分配策略的全局优化发展,以解决前两种方法未考虑HESS成本和重量的优化问题。最后,指出未来需要基于电动汽车的城市道路自然行驶数据,以优化整个动力电池组的寿命为目标,考虑驾驶员风格建立个性化的参数匹配全局优化模型,以降低其制造成本;并结合道路交通信息进行更准确的能耗预测,采用离线与在线控制相结合的智能化能量分配策略,以进一步提升能量分配效果。
中图分类号:
胡林, 田庆韬, 黄晶, 叶瑶, 伍贤辉. 电动汽车锂离子电池-超级电容混合储能系统能量分配与参数匹配研究综述[J]. 机械工程学报, 2022, 58(16): 224-237.
HU Lin, TIAN Qingtao, HUANG Jing, YE Yao, WU Xianhui. Review on Energy Distribution and Parameter Matching of Lithium-ion Battery-super Capacitor Hybrid Energy Storage System for Electric Vehicles[J]. Journal of Mechanical Engineering, 2022, 58(16): 224-237.
[1] Traffic Management Bureau of the Ministry of Public Security. The number of new energy vehicles in China has exceeded 10 million[R/OL]. (2022-07-06)[2022-08-05]. https://www.mps.gov.cn/n2254314/n6409334/c8577234/content.html. 公安部交通管理局. 全国新能源汽车保有量已突破1000万辆[R/OL]. (2022-07-06)[2022-08-05]. https://www.mps.gov.cn/n2254314/n6409334/c8577234/content.html. [2] MIAO Ping, YAO Zhen, LIU Qinghua, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. 缪平, 姚祯, 刘庆华, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. [3] ZHANG L, HU X, WANG Z, et al. Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110581. [4] FAN Zhiwei, QIAO Dan, CUI Haigang. Influence of charge and discharge rate on capacity fade of lithium-ion battery[J]. Chinese Journal of Power Sources, 2020, 44(3): 325-329. 范智伟, 乔丹, 崔海港. 锂离子电池充放电倍率对容量衰减影响研究[J]. 电源技术, 2020, 44(3): 325-329. [5] WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3948. [6] ZHANG Lei, HU Xiaosong, WANG Zhenpo. Overview of supercapacitor management techniques in electrified vehicle applications[J]. Journal of Mechanical Engineering, 2017, 53(16): 32-43, 69. 张雷, 胡晓松, 王震坡. 超级电容管理技术及在电动汽车中的应用综述[J]. 机械工程学报, 2017, 53(16): 32-43, 69. [7] VUKAJLOVIĆ N, MILIĆEVIĆ D, DUMNIĆ B, et al. Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage[J]. Journal of Energy Storage, 2020, 31: 101603. [8] CARTER R, CRUDEN A, HALL P J. Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1526-1533. [9] ZHU Xiaoqing, WANG Zhenpo, WANG Cong. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. 朱晓庆, 王震坡, 王聪. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. [10] BARCELLONA S, PIEGARI L, VILLA A. Passive hybrid energy storage system for electric vehicles at very low temperatures[J]. Journal of Energy Storage, 2019, 25: 100833. [11] ZIMMERMANN T, KEIL P, HOFMANN M, et al. Review of system topologies for hybrid electrical energy storage systems[J]. Journal of Energy Storage, 2016, 8: 78-90. [12] WANG T, DENG W, WU J, et al. Power optimization for hybrid energy storage system of electric vehicle[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Beijing: IEEE, 2014: 1-6. [13] LU X, WANG H. Optimal sizing and energy management for cost-effective PEV hybrid energy storage systems[J]. IEEE Transactions on Industrial Informatics, 2019, 16(5): 3407-3416. [14] SHEN J, KHALIGH A. A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 223-231. [15] ZHANG Fengqi, HU Xiaosong, XU Kanghui, et al. Current status and prospects for model predictive energy management in hybrid electric vehicles[J]. Journal of Mechanical Engineering, 2020, 55(10): 86-108. 张风奇, 胡晓松, 许康辉, 等. 混合动力汽车模型预测能量管理研究现状与展望[J]. 机械工程学报, 2020, 55(10): 86-108. [16] TROVAO J P, DUBOIS M R, GOMOZOV O, et al. A model predictive control with non-uniform sampling times for a hybrid energy storage system in electric vehicle application[C]//2015 IEEE Vehicle Power and Propulsion Conference (VPPC). Montreal: IEEE, 2015: 1-6. [17] SHEN J, KHALIGH A. Predictive control of a battery/ultracapacitor hybrid energy storage system in electric vehicles[C]//2016 IEEE Transportation Electrification Conference and Expo (ITEC). Dearborn : IEEE, 2016: 1-6. [18] ZHAO Yulong, WANG Weida, XIANG Changle, et al. Research and bench test of nonlinear model predictive control-based power allocation strategy for hybrid energy storage system[J]. IEEE Access, 2018, 6: 70770-70787. [19] HU L, ZHONG Y, HAO W, et al. Optimal route algorithm considering traffic light and energy consumption[J]. IEEE Access, 2018, 6: 59695-59704. [20] HU Lin, ZHONG Yuanxing, HUANG Jing, et al. Optimal path programming algorithm with consideration of signalized intersection delay[J]. Automotive Engineering, 2018, 40(10): 1223-1229. 胡林, 钟远兴, 黄晶, 等. 考虑信号交叉口延时的最优车辆路径规划算法[J]. 汽车工程, 2018, 40(10): 1223-1229. [21] HOU J, SONG Z. A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity[J]. Applied energy, 2020, 257: 113900. [22] ALAOUI C. Hybrid vehicle energy management using deep learning[C]//2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). Taza: IEEE, 2019: 1-5. [23] SHEN J, KHALIGH A. Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1910-1918. [24] LAGO L F R, FACEROLI S T, FERREIRA R A F, et al. Power demand prediction based on mixed driving cycle applied to electric vehicle hybrid energy storage system[C]//2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC). Santos: IEEE, 2019: 1-6. [25] ZHANG Q, DENG W, LI G. Stochastic control of predictive power management for battery/supercapacitor hybrid energy storage systems of electric vehicles[J]. IEEE Transactions on Industrial Informatics, 2017, 14(7): 3023-3030. [26] HU L, HU X, CHE Y, et al. Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering[J]. Applied Energy, 2020, 262: 114569. [27] CHOI M E, KIM S W, SEO S W. Energy management optimization in a battery/supercapacitor hybrid energy storage system[J]. IEEE Transactions on Smart Grid, 2011, 3(1): 463-472. [28] LI G, YANG Z, LI B, et al. Power allocation smoothing strategy for hybrid energy storage system based on Markov decision process[J]. Applied Energy, 2019, 241: 152-163. [29] KUPERMAN A, AHARON I, MALKI S, et al. Design of a semiactive battery-ultracapacitor hybrid energy source[J]. IEEE Transactions on Power Electronics, 2012, 28(2): 806-815. [30] XUE X D, CHENG K W E, RAMAN S R, et al. Investigation of energy distribution and power split of hybrid energy storage systems in electric vehicles[C]//2016 International Symposium on Electrical Engineering (ISEE). Hong Kong: IEEE, 2016: 1-7. [31] WANG Feng, LUO Yutao. Parameter optimization and energy management of hybrid energy storage system based on battery life[J]. Journal of Automotive Safety and Energy, 2019, 10(2): 211-218. 王峰, 罗玉涛. 基于电池寿命的复合储能系统参数优化及能量管理[J]. 汽车安全与节能学报, 2019, 10(2): 211-218. [32] SONG Saojian, WEI Ze, LIU Yanyang, et al. Research on energy management for ultracapacitor/lithium battery hybrid electric vehicles[J]. Control Engineering of China, 2019, 26(12): 2272-2277. 宋绍剑, 魏泽, 刘延扬, 等. 锂电池和超级电容混合电动汽车的能量管理[J]. 控制工程, 2019, 26(12): 2272-2277. [33] ZHANG Wei, YANG Jue, ZHANG Wenming, et al. Research on battery-supercapcitor hybrid energy system for pure electric vehicle[J]. Electrical Measurement & Instrumentation, 2019, 56(3): 82-90. 张卫, 杨珏, 张文明, 等. 纯电动汽车蓄电池-超级电容复合能源系统研究[J]. 电测与仪表, 2019, 56(3): 82-90. [34] BINDU R, THALE S. Power management strategy for an electric vehicle driven by hybrid energy storage system[J]. IETE Journal of Research, 2022, 68(4): 2801-2811. [35] YAO Dizhao, XIE Changjun, ZENG Tian, et al. Multi-fuzzy control based energy management strategy of battery/super-capacitor hybrid energy system of electric vehicles[J]. Automotive Engineering, 2019, 41(6): 615-624. 姚堤照, 谢长君, 曾甜, 等. 基于多模糊控制的电电混合汽车能量管理策略[J]. 汽车工程, 2019, 41(6): 615-624. [36] ZHOU S, CHEN Z. Model prediction and rule based energy management strategy for hybrid energy storage system[C]//2019 IEEE 3rd International Electrical and Energy Conference (CIEEC). Beijing: IEEE, 2019: 427-432. [37] ECKERT J J, DE ALKMIN SILVA L C, DEDINI F G, et al. Electric vehicle powertrain and fuzzy control multi-objective optimization, considering dual hybrid energy storage systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3773-3782. [38] GAO C, ZHAO J, WU J, et al. Optimal fuzzy logic based energy management strategy of battery/supercapacitor hybrid energy storage system for electric vehicles[C]//2016 12th World Congress on Intelligent Control and Automation (WCICA). Guilin: IEEE, 2016: 98-102. [39] MICHALCZUK M, UFNALSKI B, GRZESIAK L M. Particle swarm optimization of the fuzzy logic controller for a hybrid energy storage system in an electric car[C]//2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Karlsruh: IEEE, 2016: 1-10. [40] USMANI M J, HAQUE A, KURUKURU V S B, et al. Power management for hybrid energy storage system in electric Vehicles[C]//2019 International Conference on Power Electronics, Control and Automation (ICPECA). New Delhi: IEEE, 2019: 1-6. [41] SINGH A, PATTNAIK S. Design of a efficient power sharing strategy for a battery-ultracapacitor hybrid energy storage system[C]//2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). Delhi: IEEE, 2016: 1-5. [42] ASENSIO M, MAGALLAN G, AMAYA G, et al. Efficiency and performance analysis of battery-ultracapacitor based semi-active hybrid energy systems for electric vehicles[J]. IEEE Latin America Transactions, 2018, 16(10): 2581-2590. [43] DINH A N, HOANG T T, TA M C. Modeling and control of electric vehicles with hybrid energy storage system using energetic macroscopic representation[C]//2017 IEEE Vehicle Power and Propulsion Conference (VPPC). Belfort: IEEE, 2017: 1-6. [44] SUN Li, FENG Kaiwu, CHAPMAN C, et al. An adaptive power-split strategy for battery-supercapacitor powertrain-design, simulation, and experiment[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9364-9375. [45] HUANG Jing, CHEN Yimin, PENG Xiaoyan, et al. Study on the driving style adaptive vehicle longitudinal control strategy[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(4): 1107-1115. [46] HUANG Jing, JI Zhongxun, PENG Xiaoyan, et al. Driving style adaptive lane-changing trajectory planning and control[J]. China Journal of Highway and Transport, 2019, 32(6): 226-239, 247. 黄晶, 蓟仲勋, 彭晓燕, 等. 考虑驾驶人风格的换道轨迹规划与控制[J]. 中国公路学报, 2019, 32(6): 226-239, 247. [47] ZHANG Qian, WU Xiaolan, BAI Zhifeng, et al. Research on adaptive energy management strategy of hybrid energy storage system in electric vehicles[J]. Energy Storage Science and Technology, 2020, 9(3): 878-884. 张骞, 武小兰, 白志峰, 等. 电动汽车混合储能系统自适应能量管理策略研究[J]. 储能科学与技术, 2020, 9(3): 878-884. [48] ZHANG Qiao, LI Gang. Experimental study on a semi-active battery-supercapacitor hybrid energy storage system for electric vehicle application[J]. IEEE Transactions on Power Electronics, 2019, 35(1): 1014-1021. [49] ASENSIO E M, MAGALLÁN G A, DE ANGELO C H, et al. Energy management on battery/ultracapacitor hybrid energy storage system based on adjustable bandwidth filter and sliding-mode control[J]. Journal of Energy Storage, 2020, 30: 101569. [50] HU J, LIU D, DU C, et al. Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition[J]. Energy, 2020, 198: 117298. [51] WU Y, HUANG Z, LIAO H, et al. Adaptive power allocation using artificial potential field with compensator for hybrid energy storage systems in electric vehicles[J]. Applied Energy, 2020, 257: 113983. [52] ZHUAN Xiangtao, CUI Tingting. Research on energy management of composite power system for electric vehicles[J]. Chinese Journal of Power Sources, 2020, 44(4): 549-552. 专祥涛, 崔婷婷. 电动汽车复合电源系统能量管理研究[J]. 电源技术, 2020, 44(4): 549-552. [53] YANG G, LI J, FU Z, et al. Optimization of logic threshold control strategy for electric vehicles with hybrid energy storage system by pseudo-spectral method[J]. Energy Procedia, 2018, 152: 508-513. [54] RIZOUG N, MESBAHI T, SADOUN R, et al. Development of new improved energy management strategies for electric vehicle battery/supercapacitor hybrid energy storage system[J]. Energy Efficiency, 2018, 11(4): 823-843. [55] MESBAHI T, RIZOUG N, BARTHOLOMEÜS P, et al. Optimal energy management for a li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(2): 99-110. [56] WANG Yafei, TIAN Guofu, LIU Zhongxu, et al. A hybrid energy storage system and its energy management strategy verification for electric vehicle applications[J]. Journal of Interation Technology, 2020, 9(1): 66-79. 汪亚飞, 田国富, 刘忠旭, 等. 电动汽车复合储能系统能量管理策略及其快速控制原型验证[J]. 集成技术, 2020, 9(1): 66-79. [57] HUANG Zhiqi, YAO Dongwei, YANG Guoqing, et al. Study on piecewise control strategy of braking energy regeneration for hybrid power system of electric vehicle[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(3): 280-286. 黄智奇, 姚栋伟, 杨国青, 等. 电动汽车复合能源系统再生制动分段控制策略研究[J]. 机电工程, 2016, 33(3): 280-286. [58] WANG B, XU J, CAO B, et al. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles[J]. Journal of Power Sources, 2015, 281: 432-443. [59] RADE M R. Design and development of hybrid energy storage system for electric vehicle[C]//2018 International Conference on Information, Communication, Engineering and Technology (ICICET). Pune: IEEE, 2018: 1-5. [60] ZHAO W, WU G, WANG C, et al. Energy transfer and utilization efficiency of regenerative braking with hybrid energy storage system[J]. Journal of Power Sources, 2019, 427: 174-183. [61] SONG Z, HOFMANN H, LI J, et al. Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J]. Applied Energy, 2015, 139: 151-162. [62] LIU C, WANG Y, WANG L, et al. Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization[J]. Journal of Power Sources, 2019, 438: 227024. [63] WANG B, XU J, WAI R J, et al. Adaptive sliding-mode with hysteresis control strategy for simple multimode hybrid energy storage system in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 64(2): 1404-1414. [64] WANG Gang, SONG Xiaoqi, XU Dezhi, et al. Research on nonlinear adaptive control method for hybrid energy storage system[J]. China Sciencepaper, 2018, 13(23): 2643-2647. 王刚, 宋晓麒, 许德智, 等. 汽车混合储能系统的非线性自适应控制方法研究[J]. 中国科技论文, 2018, 13(23): 2643-2647. [65] JUNG H, WANG H, HU T. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices[J]. Journal of Power Sources, 2014, 267: 566-575. [66] YANG B, WANG J, ZHANG X, et al. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444. [67] SONG Z, HOU J, HOFMANN H, et al. Sliding-mode and Lyapunov function-based control for battery/ supercapacitor hybrid energy storage system used in electric vehicles[J]. Energy, 2017, 122: 601-612. [68] JIANG X, HU J, JIA M, et al. Parameter matching and instantaneous power allocation for the hybrid energy storage system of pure electric vehicles[J]. Energies, 2018, 11(8): 1933. [69] ZHENG C, LI W, LIANG Q. An energy management strategy of hybrid energy storage systems for electric vehicle applications[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4): 1880-1888. [70] CUI Naxin, ZHUO Kong, WANG Chunyu, et al. Research on energy management strategy for electric vehicles with hybrid battery/capacitor energy storage system[J]. DEStech Transactions on Environment, Energy and Earth Sciences, 2018: 1-8. [71] YIN H, ZHAO C, LI M, et al. Optimization based energy control for battery/super-capacitor hybrid energy storage systems[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. Vienna: IEEE, 2013: 6764-6769. [72] YIN H, ZHAO C, LI M, et al. Utility function-based real-time control of a battery ultracapacitor hybrid energy system[J]. IEEE Transactions on Industrial Informatics, 2014, 11(1): 220-231. [73] SONG Z, HOFMANN H, LI J, et al. Energy management strategies comparison for electric vehicles with hybrid energy storage system[J]. Applied Energy, 2014, 134: 321-331. [74] YUAN Yiyue. Research on parameters matching of the vehicle-mounted combined power based on secondary development of ADVISOR[D]. Harbin: Harbin Institute of Technology, 2012 袁义悦. 基于ADVISOR二次开发的车载复合电源参数匹配研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [75] MASIH-TEHRANI M, HA'IRI-YAZDI M R, ESFAHANIAN V, et al. Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement[J]. Journal of Power Sources, 2013, 244: 2-10. [76] SCHALTZ E, KHALIGH A, RASMUSSEN P O. Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8): 3882-3891. [77] YU Yuanbin, WANG Qingnian, WANG Jiaxue, et al. Parameter matching and optimization of on-board synergic electric power supply system of hybrid electric vehicle[J]. Journal of Jilin University, 2008, 38(4): 764-768. 于远彬, 王庆年, 王加雪, 等. 混合动力汽车车载复合电源参数匹配及其优化[J]. 吉林大学学报, 2008, 38(4): 764-768. [78] PAUL T, MESBAHI T, DURAND S, et al. Study and influence of standardized driving cycles on the sizing of Li-ion Battery/Supercapacitor Hybrid Energy Storage[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2019: 1-6. [79] LI Y, HUANG X, LIU D, et al. Hybrid energy storage system and energy distribution strategy for four-wheel independent-drive electric vehicles[J]. Journal of Cleaner Production, 2019, 220: 756-770. [80] WANG Zhenya. Modeling and research on hybrid energy storage system and control theory for electric vehicle[D]. Xi'an: Xidian University, 2019. 王贞雅. 纯电动汽车复合电源建模及控制策略研究[D]. 西安: 西安电子科技大学, 2019. [81] SADOUN R, RIZOUG N, BARTHOLOMEÜS P, et al. Optimal sizing of hybrid supply for electric vehicle using Li-ion battery and supercapacitor[C]//2011 IEEE vehicle power and propulsion conference. Chicago: IEEE, 2011: 1-8. [82] ZHANG L, YE X, XIA X, et al. A real-time energy management and speed controller for an electric vehicle powered by a hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6272-6280. [83] MASIH-TEHRANI M, YAHYAEI R. Study of lithium battery thermal effect on battery and hybrid battery/ultra-capacitor sizing for an electric vehicle[J]. Journal of Engineering Technology, 2017, 6: 85-99. [84] CHEN H, ZHANG Z, GUAN C, et al. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship[J]. Energy, 2020, 197: 117285. [85] SONG Chuanxue, ZHOU Fang, XIAO Feng, et al. Parameter matching of on-board hybrid energy storage system based on convex optimization method[J]. Journal of Mechanical Engineering, 2017, 53(16): 44-51. 宋传学, 周放, 肖峰, 等. 基于凸优化的车载复合电源参数匹配[J]. 机械工程学报, 2017, 53(16): 44-51. [86] OSTADI A, KAZERANI M. A Comparative analysis of optimal sizing of battery-only, ultracapacitor-only, and battery–ultracapacitor hybrid energy storage systems for a city bus[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4449-4460. [87] CORREA F C, ECKERT J J, SANTICIOLLI F M, et al. Electric vehicle battery-ultracapacitor energy system optimization[C]//2017 IEEE Vehicle Power and Propulsion Conference (VPPC). Belfort: IEEE, 2017: 1-6. [88] ECKERT J J, SILVA L, DEDINI F G, et al. Electric vehicle powertrain and fuzzy control multi-objective optimization, considering dual hybrid energy storage systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3773-3782. [89] ZHANG L, HU X, WANG Z, et al. Multi-objective optimal sizing of hybrid energy storage system for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 67(2): 1027-1035. [90] SHEN J, DUSMEZ S, KHALIGH A. Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications[J]. IEEE Transactions on industrial informatics, 2014, 10(4): 2112-2121. [91] ELDEEB H H, ELSAYED A T, LASHWAY C R, et al. Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2252-2262. [92] HU L, ZHOU X, ZHANG X, et al. A review on key challenges in intelligent vehicles: Safety and driver-oriented features[J]. IET Intelligent Transport Systems, 2021, 15(9): 1093-1105. [93] WANG Yixiu, WEI Xuezhe, FANG Qiaohua, et al. Consistency variation law and equalization strategy of electric vehicle battery for maximizing the life of the battery pack[J]. Journal of Mechanical Engineering, 2020, 56(22): 176-183. 汪宜秀, 魏学哲, 房乔华, 等. 面向整组寿命最大化的电动汽车电池一致性变化规律及其均衡策略[J]. 机械工程学报, 2020, 56(22): 176-183. [94] ZHANG Z, ZHANG L, HU L, et al. Active cell balancing of lithium-ion battery pack based on average state of charge[J]. International Journal of Energy Research, 2020, 44(4): 2535-2548. |
[1] | 金贤建, 王佳栋, 徐利伟, 严择圆, 卢彦博, 殷国栋, 陈南. 轮毂电机驱动电动汽车主动悬架μ综合鲁棒控制研究[J]. 机械工程学报, 2024, 60(16): 259-269. |
[2] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[3] | 张雷, 王祺, 王震坡, 丁晓林, 孙逢春. 基于线控制动的分布式驱动电动汽车制动俯仰角舒适控制研究[J]. 机械工程学报, 2024, 60(10): 463-475. |
[4] | 赵明慧, 郭浩然, 张利鹏, 刘欣. 四轮独立转向分布式驱动电动汽车单轮转向失效行驶稳定性控制[J]. 机械工程学报, 2024, 60(10): 507-522. |
[5] | 吴建洋, 王震坡, 张雷, 丁晓林. 四轮轮毂电机驱动电动汽车纵侧向稳定性协调控制策略研究[J]. 机械工程学报, 2023, 59(4): 163-172. |
[6] | 肖宗鑫, 胡明辉, 石力王, 周安健. 电动汽车内置式永磁同步电机转子温度在线估计[J]. 机械工程学报, 2023, 59(24): 209-222. |
[7] | 来鑫, 马云杰, 郑岳久, 韩雪冰. 一种基于几何特征变换与迁移的锂离子电池电化学阻抗谱曲线重构方法[J]. 机械工程学报, 2023, 59(22): 140-149. |
[8] | 张雷, 徐同良, 李嗣阳, 程树辉, 丁晓林, 王震坡, 孙逢春. 全线控分布式驱动电动汽车底盘协同控制研究综述[J]. 机械工程学报, 2023, 59(20): 261-280. |
[9] | 邵嗣杨, 马翔, 袁伟, 张开宇, 傅晓飞, 黄晨宏. 含电动汽车的不确定性微电网鲁棒优化调度方法*[J]. 电气工程学报, 2023, 18(2): 201-209. |
[10] | 魏洪乾, 赵文强, 艾强, 张幽彤, 王洪荣, 赖晨光, 邹喜红. 轮毂电机独立驱动电动汽车线性时变模型预测主动安全控制[J]. 机械工程学报, 2023, 59(14): 190-201. |
[11] | 沈童, 殷国栋, 任彦君, 王凡勋, 梁晋豪, 沙文瀚. 考虑轮胎弛豫特性的轮毂电机驱动电动汽车鲁棒自适应驱动防滑控制[J]. 机械工程学报, 2023, 59(14): 222-236. |
[12] | 李达, 张普琛, 林倪, 张照生, 王震坡, 邓钧君. 基于多模型耦合的电动汽车三电系统安全性估计方法[J]. 机械工程学报, 2023, 59(12): 354-363. |
[13] | 赵敬玉, 徐铖, 李晓宇. 基于实际行驶数据的电动汽车能耗分析与预测[J]. 机械工程学报, 2023, 59(10): 263-274. |
[14] | 周晨瑞, 盛光宗, 李升. 考虑电动汽车接入的微电网多目标优化调度*[J]. 电气工程学报, 2023, 18(1): 211-218. |
[15] | 林棻, 蔡亦璋, 赵又群, 臧利国, 王少博. 匹配机械弹性车轮的分布式驱动电动汽车稳定性控制[J]. 机械工程学报, 2022, 58(8): 236-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||