[1] MENG Yi, CHEN Qiang, SUGIYAMA S, et al. Effects of reheating and subsequent rapid cooling on microstructural evolution and semisolid forming behaviors of extruded Mg-8.20Gd-4.48Y-3.34Zn-0.36Zr alloy[J]. Journal of Materials Processing Technology, 2017, 247: 192-203. [2] GUI Yunwei, OU YANG Lingxiao, CUI Yujie, et al. Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg-9.80Gd-3.78Y- 1.12Sm-0.48Zr alloy[J]. Journal of Magnesium and Alloys, 2021, 9(2): 456-466. [3] XU Lin, WANG Jiahao, WU Ruizhi, et al. Microstructure and mechanical properties of Mg-14Li-1Al/MWCNTs composites prepared by electrophoretic deposition and accumulative roll bonding[J]. Journal of Manufacturing Processes, 2021, 72: 431-438. [4] WANG Jiahao, XU Lin, WU Ruizhi, et al. Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg-9Li-3Al-1Zn Alloy Processed by Accumulative Roll Bonding[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 490-499. [5] ZHAO Z Y, GUAN R G, SHEN Y F, et al. Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling[J]. Journal of Materials Science and Technology, 2021, 91: 251-261. [6] XIN Yunchang, HONG Rui, FENG Bo, et al. Fabrication of Mg/AL multilayer plates using an accumulative extrusion bonding process[J]. Materials Science and Engineering A, 2015, 640: 210-216. [7] ZHANG Tingting, WANG Wenxian, YAN Zhifeng, et al. Interfacial morphology and bonding mechanism of explosive weld joints[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 8. [8] DUAN R H, XIE G M, XUE P, et al. Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding[J]. Journal of Materials Science and Technology, 2021, 93: 221-231. [9] WU Chuansong, LÜ Xueqi, SU Hao, et al. Research progress in dissimilar friction stir welding of aluminium/magnesium alloys[J]. Journal of Mechanical Engineering, 2020, 56(6): 4-16. 武传松, 吕学奇, 宿浩, 等. 铝-镁异质合金搅拌摩擦焊接成形的研究进展[J]. 机械工程学报, 2020, 56(6): 4-16. [10] KUMAR S, WU Chuansong. Eliminating intermetallic compounds via Ni interlayer during friction stir welding of dissimilar Mg/Al alloys[J]. Journal of Materials Research and Technology, 2021, 15: 4353-4369. [11] GAO Lei, LI Feng, HUO Pengda, et al. Accurate prediction of the extrusion forming bonding reliability for heterogeneous welded sheets based on GA-BP neural network[J]. International Journal of Advanced Manufacturing Technology, 2021, 117(3-4): 765-774. [12] FOUAD Y. Characterization of a high strength Al-alloy interlayer for mechanical bonding of Ti to AZ31 and associated tri-layered clad[J] Alexandria Engineering Journal, 2014, 53(2): 289-293. [13] BATAEV I A, BATAEV A A, MALI V I, et al. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing[J]. Materials and Design, 2012, 35: 225-234. [14] DU Tianyu. The hot roll bonding process and interface diffusion of 5A06Al/AZ31Mg laminated composites[D]. Qinhuangdao: Yanshan University, 2017. 杜天宇. 5A06/AZ31铝镁复合板热轧制备过程及其结合界面研究[D]. 秦皇岛: 燕山大学, 2017. [15] WU Yang. Microstructure and mechanical properties of Mg/Al composite laminates fabricated by extrusion[D]. Chongqing: Chongqing University, 2016. 吴洋. 利用挤压制备镁/铝合金复合板材的组织与性能研究[D]. 重庆: 重庆大学, 2016. [16] LING Cong, ZHONG Yi, CHEN Yegao, et al. Fabrication of lateral compound Cu/Al composites by Conclad continuous extrusion[J]. Special Casting and Nonferrous Alloys, 2017, 37(1): 89-93. 凌聪, 钟毅, 陈业高, 等. Conclad连续挤压法制备侧向复合型Cu/Al复合材料[J]. 特种铸造及有色合金, 2017, 37(1): 89-93. [17] GAO Lei, LI Feng, WANG Ye, et al. Fabrication and interface structural behavior of Mg/Al thickness-oriented bonding sheet via direct extrusion[J/OL]. Metals and Materials International, [2021-11-03]. https://link.springer.com/article/10.1007/s12540-021-01077-5. [18] TANG Jianwei, CHEN Liang, ZHAO Guoqun, et al. Achieving three-layered Al/Mg/Al sheet via combining porthole die co-extrusion and hot forging[J]. Journal of Magnesium and Alloys, 2020, 8(3): 654-666. [19] LI Sha, LUO Chao, BASHIR M, et al. Interface structures and mechanical properties of corrugated plus flat rolled and traditional rolled Mg/Al clad plates[J]. Rare Metals, 2021, 40(10): 2947-2955. [20] WU Yang, FENG Bo, XIN Yunchang, et al. Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion[J]. Materials Science and Engineering A, 2015, 640: 454-459. [21] ZHAO Zilong, GAO Qiang, HOU Junfeng, et al. Determining the microstructure and properties of magnesium aluminum composite panels by hot rolling and annealing[J]. Journal of Magnesium and Alloys, 2016, 4(3): 242-248. [22] LUO Changzeng, LIANG Wei, CHEN Zhiqiang, et al. Effect of high temperature annealing and subsequent hot rolling on microstructural evolution at the bond-interface of Al/Mg/Al alloy laminated composites[J]. Materials Characterization, 2013, 84: 34-40. [23] CHEN Liang, HAN Jianning, ZHOU Bingwen, et al. Effects of rolling and annealing on microstructures and properties of Cu-Mg-Te-Y alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1046-1052. |