[1] 卢秉恒. 增材制造技术-现状与未来[J]. 中国机械工程,2020,31(1):19-23. LU Bingheng. Additive manufacturing-current situation and future[J]. China Mechanical Engineering,2020,31(1):19-23. [2] TUAN D N,ALIREZA K,GABRIELE I,et al. Additive manufacturing (3D printing):A review of materials,methods,applications and challenges[J]. Composites Part B,2018,143:172-196. [3] 兰红波,李涤尘,卢秉恒. 微纳尺度3D打印[J]. 中国科学:技术科学,2015,45(9):919-940. LAN Hongbo,LI Dichen,LU Bingheng. Micro-and nanoscale 3D printing[J]. Science China:Technical Science,2015,45(9):919-940. [4] VAEZI M,SEITZ H,YANG S. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology,2013,67(5):1721-1754. [5] 方浩博,陈继民. 基于数字光处理技术的3D打印技术[J]. 北京工业大学学报,2015,41(12):1775-1782. FANG Haobo,CHEN Jimin. 3D printing based on digital light processing[J]. Technology Journal of Beijing University of Technology,2015,41(12):1775-1782. [6] 王忠睿,苗恺,朱伟军,等. 基于立体光固化3D打印的一体化石膏铸型的高温力学性能研究[J]. 机械工程学报,2019,55(23):182-188. WANG Zhongrui,MIAO Kai,ZHU Weijun,et al. Study on high temperature mechanical properties of integrated gypsum molds based on vat photopolymerization[J]. Journal of Mechanical Engineering,2019,55(23):182-188. [7] ZHOU C,CHEN Y,YANG Z G,et al. Digital material fabrication using mask-image-projection-based stereoli-thography[J]. Rapid Prototyping Journal,2013,19(3):153-165. [8] PAN Y Y,CHEN Y,XU J. A fast mask projection stereolithography process for fabricating digital models in minutes[J]. Journal of manufacturing science and engineering:Transactions of the ASME,2012,134(5):051011-1-051011-9. [9] LIRAVI F,DAS S,ZHOU C. Separation force analysis and prediction based on cohesive element model for constrained-surface stereolithography[J]. Computer-Aided Design,2015,69:134-142. [10] HUANG Y M,JIANG C. On-line force monitoring of platform ascending rapid prototyping system[J]. Journal of Materials Processing Tech.,2005,159(2):257-264. [11] WU X Q,LIAN Q,LI D,et al. Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model[J]. Journal of Materials Processing Technology,2017,243:184-196. [12] JIN J,YANG J,MAO H,et al. A vibration-assisted method to reduce separation force for stereolithography[J]. Journal of Manufacturing Processes,2018,34PB(AUG.):793-801. [13] TUMBLESTON J R,SHIRVANYANTS D,ERMOSHKIN N,et al. Continuous liquid interface production of 3D objects[J]. Science,2015,347(6228):1349-1352. [14] SAMUEL C L,BRANISLAV H,HARALD W,et al. Strategies to reduce oxygen inhibition in photoinduced polymerization[J]. Chemical Reviews,2014,114:557-589. [15] DENDUKURI D,PANDA P,HAGHGOOIE R,et al. Modeling of oxygen-inhibited free radical photopo-lymerization in a PDMS microfluidic device[J]. Macromolecules,2008,41(22):8547-8556. [16] 刘小栋,连芩,李涤尘,等. 基于氧阻聚效应的陶瓷面成形工艺优化研究[J]. 机械工程学报,2019,55(9):224-232. LIU Xiaodong,LIAN Qin,LI Dichen,et al. Process optimization of oxygen-inhibition-based ceramic mask-projection stereolithography[J]. Journal of Mechanical Engineering,2019,55(9):224-232. [17] JANUSZIEWICZ R,TUMBLESTON J R,QUINTANILLA A L,et al. Layerless fabrication with continuous liquid interface production[J]. PNAS,2016,113(42):11703-11708. [18] ARTUS G R J,JUNG S,ZIMMERMANN J,et al. Silicone nanofilaments and their application as superhydrophobic coatings[J]. Advanced Materials,2010,18(20):2758-2762. [19] XU J,PAN Y Y,YU X M,et al. Effect of constrained surface texturing on separation force in projection stereolithography[J]. Journal of manufacturing science and engineering:Transactions of the ASME,2018,140(9):091007. [20] WU L,DONG Z,DU H,et al. Bioinspired ultra-low adhesive energy interface for continuous 3D printing:Reducing curing induced adhesion[J]. Research,2018, 2018(1):1-10. [21] 温诗铸. 界面科学与技术[M]. 北京:清华大学出版社,2011. WEN Shizhu. Interface science and technology[M]. Beijing:Tsinghua University Press,2011. [22] CHEN T H,CHUANG Y J,CHIENG C C,et al,A wettability switchable surface by microscale surface morphology change[J]. Journal of Micromechanics and Microengineering,2007,17(3):489-492. [23] BHUSHAN B,CHAE J Y. Wetting study of patterned surfaces for superhydrophobicity[J]. Ultramicroscopy,2007,107(10-11):1033-1041. [24] SOCHI T. Slip at fluid-solid interface[J]. Polymer Reviews,2011,51(4):309-340. [25] WANG S,LIU K,YAO X,et al. Bioinspired surfaces with superwettability:New insight on theory,design,and applications[J]. Chemical Reviews,2015,115(16):8230-8293. [26] LIRAVI F. Dynamic force analysis for bottom-up projection-based additive manufacturing using finite element analysis[D]. New York:The University at Buffalo,State University of New York,2014. [27] 张福初. 无机非金属材料断裂力学[M]. 北京:中国建筑工业出版社,1982. ZHANG Fuchu. Fracture mechanics of inorganic nonmetallic materials[M]. Beijing:China Construction Industry Press,2011:15. [28] 王权岱,梁民,程林凯,等. 约束面投影成型室基底微观特征对透光性的影响[J]. 光子学报,2020,49(1):0124001. WANG Quandai,LIANG Min,CHENG Linkai,et al. Influence of micro-feature of parameters of substrate on light transmittance in constraint surface projection stereolithography[J]. Acta Photonic Sinica,2020,49(1):0124001. |