[1] CADMAN J E, ZHOU S, CHEN Y, et al. On design of multi-functional microstructural materials[J]. Journal of Materials Science, 2013, 48(48):51-66. [2] BENDSOE M P, KIKUCHI N. Generating optimal topologies in optimal design using a homogenization method[J]. Computer Methods in Applied Mechanics & Engineering, 1988, 71(2):197-224. [3] BENDSOE M P, SIGMUND O. Material interpolations in topology optimization[J]. Archive of Applied Mechanics, 1999, 69:635-654. [4] SIGMUND O. Materials with prescribed constitutive parameters:An inverse homogenization problem[J]. International Journal of Solids & Structures, 1994, 31(17):2313-2329. [5] SIGMUND O, TORQUATO S. Composite with extremal thermal expansion coefficients[J]. Applied Physics Letters, 1996, 69(21):3203-3205. [6] YIN L Z, YANG W. Optimality criteria method for topology optimization under multiple constraints[J]. Computers & Structures, 2001, 97:1839-1850. [7] 张卫红, 汪雷, 孙士平. 基于导热性能的复合材料微结构拓扑优化设计[J]. 航空学报, 2006, 27(6):1229-1233. ZHANG Weihong, WANG Lei, SUN Shiping. Topology optimization for microstructures of composite materials based on thermal conductivity[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1229-1233. [8] ZHANG W H, DAI G M, WANG F W, et al. Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures[J]. Acta Mechanica Sinica, 2007, 23(1):77-89. [9] ZHANG W H, WANG F W, DAI G M. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4):320-326. [10] HUANG X D, RADMAN A, XIE Y M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus[J]. Computational Materials Science, 2011, 50(6):1861-1870. [11] HUANG X D, XIE Y M, Evolutionary topology optimization of continuum structures[J]. Finite Elements in Analysis & Design, 2011, 47(8):942-948. [12] KELSEY S, GELLATLY R A, CLARK B W. The shear modulus of foil honeycomb cores:A theoretical and experimental investigation on cores used in sandwich construction[J]. Aircraft Engineering and Aerospace Technology, 1958, 30(10):294-302. [13] 梁森, 陈花玲, 梁天锡. 蜂窝夹芯胞元壳的屈曲特性研究[J]. 机械工程学报, 2004, 40(12):90-95. LIANG Sen, CHEN Hualing, LIANG Tianxi. Buckling study on a thin-walled cellular shell of honeycomb sandwich structure[J]. Chinese Journal of Mechanical Engineering, 2004, 40(12):90-95. [14] SHEN H S, XIANG Y. Buckling and postbuckling of anisotropic laminated cylindrical shells under combined axial compression and torsion[J]. Composite Structures, 2008, 84(4):375-386. [15] SHI G, TONG P. Equivalent transverse shear stiffness of honeycomb cores[J]. International Journal of Solids & Structures, 1995, 32(10):1383-1393. [16] BARTOLOZZI G, BALDANZINI N, PIERINI M. Equivalent properties for corrugated cores of sandwich structures:A general analytical method[J]. Composite Structures, 2014, 108:736-746. [17] PAN S D, WU L Z, SUN Y G. Transverse shear modulus and strength of honeycomb cores[J]. Composite Structures, 2008, 84(4):369-374. [18] HAN B, YU B, XU Y, et al. Foam filling radically enhances transverse shear response of corrugated sandwich plates[J]. Materials & Design, 2015, 77:132-141. [19] QIAO P, XU X F. Refined analysis of torsion and in-plane shear of honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2005, 7(4):289-305. [20] LI X, LI G, WANG C H, et al. Optimum design of composite sandwich structures subjected to combined torsion and bending loads[J]. Applied Composite Materials, 2012, 19(3-4):315-331. [21] KAMINAKIS N T, DROSOPOULOS G A, STAVROULAKIS G E. Design and verification of auxetic microstructures using topology optimization and homogenization[J]. Archive of Applied Mechanics, 2015, 85(9-10):1289-1306. [22] XIA L, BREITKOPF P. Design of materials using topology optimization and energy-based homogenization approach in Matlab[J]. Structural & Multidisciplinary Optimization, 2015, 52(6):1229-1241. [23] BENDOSE M P, SIGMUND O. Topology optimization:theory, methods and applications[M]. New York:Springer, 2003. [24] 焦洪宇, 周奇才, 李文军, 等. 基于变密度法的周期性拓扑优化[J]. 机械工程学报, 2013, 49(13):132-138. JIAO Hongyu, ZHOU Qicai, LI Wenjun, et al. Periodic topology optimization using variable density method[J]. Journal of Mechanical Engineering, 2013, 49(13):132-138. [25] 王宪杰, 张洵安. 基于宏观性能的微观多孔材料拓扑优化[J]. 功能材料, 2014(18):18078-18082. WANG Xianjie, ZHANG Xunan. Topology optimization of microstructures of cellular material based on the properties of macrostructures[J]. Journal of Functional Materials, 2014(18):18078-18082. [26] DU Y, CHEN D. Suppressing gray-scale elements in topology optimization of continua using modified optimality criterion methods[J]. Computer Modeling in Engineering & Sciences, 2012, 86(1):53-70. [27] 龙凯, 赵红伟. 抑制灰度单元的改进优化准则法[J]. 计算机辅助设计与图形学学报, 2010, 22(12):2197-2201. LONG Kai, ZHAO Hongwei. A modified optimality criterion method for gray elements suppression[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(12):2197-2201. [28] YIN L, WEI Y. Optimality criteria method for topology optimization under multiple constraints[J]. Computers & Structures, 2001, 79(20-21):1839-1850. [29] GIBSON L J, ASHBY M F. Cellular solids:Structure and properties[M]. 2nd ed. Cambridge:Cambridge University Press, 1997. [30] GIBSON L J. Modeling the mechanical behavior of cellular materials[J]. Materials Science & Engineering A, 1989, 110(89):1-36. [31] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 1455-2005 夹层结构或芯子剪切性能试验方法[S]. 北京:中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 1455-2005 test method for shear properties of sandwich constructions or cores[S]. Beijing:Standards Press of China, 2005. |