• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (4): 1-9.doi: 10.3901/JME.2021.04.001

• 仪器科学与技术 •    下一篇

扫码分享

面向机械装备健康监测的数据质量保障方法研究

雷亚国1, 许学方1, 蔡潇1, 李乃鹏1, 孔德同2, 张勇铭2   

  1. 1. 西安交通大学现代设计及转子轴承系统教育部重点实验室 西安 710049;
    2. 华电电力科学研究院有限公司 杭州 310030
  • 收稿日期:2020-03-02 修回日期:2020-09-25 出版日期:2021-02-20 发布日期:2021-04-28
  • 通讯作者: 雷亚国(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为大数据智能故障诊断与寿命预测、机械设备健康监测与智能维护、机械系统建模与动态信号处理。E-mail:yaguolei@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52025056,V1709208)、西安市科技计划(2017xasj1008)和中央高校基本科研业务费专项资金资助项目。

Research on Data Quality Assurance for Health Condition Monitoring of Machinery

LEI Yaguo1, XU Xuefang1, CAI Xiao1, LI Naipeng1, KONG Detong2, ZHANG Yongming2   

  1. 1. Key Laboratory of Education Ministry for Modern Design and Rotor-bearing System, Xi'an Jiao Tong University, Xi'an 710049;
    2. Huadian Electric Power Research Institute Co., LTD., Hangzhou 310030
  • Received:2020-03-02 Revised:2020-09-25 Online:2021-02-20 Published:2021-04-28

摘要: 工业“大数据”时代的到来为机械装备健康监测带来了新机遇。然而,由于运行环境异常、人为因素干扰以及采集设备故障等,机械装备健康监测大数据中往往混杂大量与健康状态无关的异常值或缺失值数据,从而造成数据质量下降。监测数据中掺杂的劣质数据容易造成对机械装备健康状态的误判,进而导致运维策略制定不当。为保障数据质量,提出一种机械装备健康监测振动数据恢复的张量分解方法。针对机械装备不同转速的振动数据,构建以转速、时窗、小波尺度和时间为维度的四阶张量,利用Tucker分解从中挖掘蕴含的机械健康状态信息,并通过张量填充对缺失值数据进行恢复。分别采用仿真数据和试验台数据验证了提出方法的有效性,结果表明,与传统数据恢复方法相比,提出方法恢复的数据与真实数据的拟合度更高。将提出方法应用于风电装备监测数据恢复,保障了监测数据的质量。

关键词: 机械装备健康监测, 数据质量保障, 数据恢复, 缺失值数据, 张量分解

Abstract: Health condition monitoring of machinery has entered into the big data era,which brings new opportunities to machinery fault diagnosis. However,due to the abnormal operating environment,disturbance from human and fault data acquisition devices,condition-monitoring data generally include lots of data with abnormal or missing values,which reduces the quality of data seriously. Wrong diagnosis results are probably obtained from the analysis of the low-quality data,leading to inappropriate strategy of machinery maintenance. To solve this problem,a condition-monitoring vibration data recovery method is proposed based on tensor decomposition. A four-order tensor including rotational speed,time-domain window,multi-scale using wavelet transform,and time is constructed. Tucker decomposition is used to process this four-order tensor for extracting the information of health condition and missing data are recovered by tensor completion. Simulated data and real vibration data are used to verify the effectiveness of the proposed method,respectively. The result shows that the data recovered by the proposed method are more close to the real data,compared with traditional data recovery methods,which demonstrates its effectiveness for data recovery in data quality assurance. The proposed method is applied to improve the quality of the condition-monitoring data collected from wind power equipment.

Key words: health condition monitoring of machinery, data quality assurance, data recovery, data with missing values, tensor decomposition

中图分类号: