[1] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State- of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [2] 杜义贤,李涵钊,谢黄海,等. 基于序列插值模型和多重网格方法的多材料柔性机构拓扑优化[J]. 机械工程学报,2018,54(13):47-56. DU Yixian,LI Hanzhao,XIE Huanghai,et al. Topology optimization of multiple materials compliant mechanisms based on sequence interpolation model and multigrid[J]. Journal of Mechanical Engineering,2018,54(13):47-56. [3] ZHU B,ZHANG X,LIU M,et al. Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method[J]. Chinese Journal of Mechanical Engineering,2019,32(1):1-12. [4] CHEN G,HOWELL L L. Symmetric equations for evaluating maximum torsion stress of rectangular beams in compliant mechanisms[J]. Chinese Journal of Mechanical Engineering,2018,31(1):1-7. [5] ZHU B,ZHANG X,ZHANG H,et al. Design of compliant mechanisms using continuum topology optimization:A review[J]. Mechanism and Machine Theory,2020,143(1):103622. [6] LIU M,ZHAN J,ZHU B,et al. Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness[J]. Mechanism and Machine Theory,2020,143(4):103728. [7] HOWELL L L. Compliant Mechanisms[M]. New York:A Wiley-interscience Publication,2001. [8] ANANTHASURESH G K,KOTA S,KIKUCHI N. Strategies for systematic synthesis of compliant MEMS[C]//American Society of Mechanical Engineers. International Mechanical Engineering Congress and Exposition,New York:ASME,1994:677-686. [9] 张宪民,汪启亮. 柔顺机构疲劳可靠性及损伤识别研究进展[J]. 华南理工大学学报,2012,40(10):190-197. ZHANG Xianmin,WANG Qiliang. Research progress of fatigue reliability and damage identification of compliant mechanisms[J]. Journal of South China University of Technology,2012,40(10):190-197. [10] 占金青,龙良明,刘敏,等. 基于最大应力约束的柔顺机构拓扑优化设计[J]. 机械工程学报,2018,54(23):32-38. ZHAN Jinqing,LONG Liangming,LIU Min,et al. Topological design of compliant mechanisms with maximum stress constraint[J]. Journal of Mechanical Engineering,2018,54(23):32-38. [11] LEON D M D,ALEXANDERSEN J,FONSECA J S O,et al. Stress-constrained topology optimization for compliant mechanism design[J]. Structural and Multidisciplinary Optimization,2015,52(5):1-15. [12] DIRKSEN F,ANSELMANN M,ZOHDI T I,et al. Incorporation of flexural hinge fatigue-life cycle criteria into the topological design of compliant small-scale devices[J]. Precision Engineering,2013,37(3):531-541. [13] LIANG J,LI R,BAI S,et al. Compliance and fatigue life analysis of U-shape flexure hinge[J]. Mechanika. 2019,25(6):501-510. [14] IVANOV I,CORVES B. Fatigue testing of flexure hinges for the purpose of the development of a high-precision micro manipulator[J]. Mechanical Sciences,2014,5(2):59-66. [15] 李海燕,张宪民,彭惠青. 柔顺机构的疲劳可靠性优化设计[J]. 中国机械工程,2004,15(23):2130-2133. LI Haiyan,ZHANG Xianmin,PENG Huiqing. Optimal design of compliant mechanism based on fatigue reliability[J]. China Mechanical Engineering,2004,15(23):2130-2133. [16] WANG Q,ZHANG X. Fatigue reliability based optimal design of planar compliant micropositioning stages[J]. Review of Scientific Instruments,2015,86(10):105117. [17] SHERIF K,WITTEVEEN W,PUCHNER K,et al. Efficient topology optimization of large dynamic finite element systems using fatigue[J]. AIAA Journal,2010,48(7):1339-1347. [18] HOLMBERG E,TORSTENFELT B,KLARBRING A. Fatigue constrained topology optimization[J]. Structural and Multidisciplinary Optimization,2014,50(2):207-219. [19] OEST J,LUND E. Topology optimization with finite-life fatigue constraints[J]. Structural and Multidisciplinary Optimization,2017,56(5):1045-1049. [20] COLLET M,BRUGGI M,DUYSINX P. Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance[J]. Structural and Multidisciplinary Optimization,2017,55(3):839-855. [21] NABAKI K,SHEN J,HUANG X. Evolutionary topology optimization of continuum structures considering fatigue failure[J]. Materials and Design,2019,166(3):107586. [22] 叶红玲,苏鹏飞,王伟伟,等. 疲劳寿命约束下的连续体结构拓扑优化[J]. 北京工业大学学报,2020,46(3):94-102. YE Hongling,SU Pengfei,WANG Weiwei,et al. Continuum topology optimization with fatigue life constraint[J]. Journal of Beijing University of Technology,2020,46(3):94-102. [23] LEE K,AHN K,YOO J. A novel P-norm correction method for lightweight topology optimization under maximum stress constraints[J]. Computers and Structures,2016,171(7):18-30. [24] LI B,JIANG C,HAN X,et al. A new approach of fatigue life prediction for metallic materials under multiaxial loading[J]. International Journal of Fatigue,2015,78(9):1-10. [25] 荣见华,赵圣佞,李方义,等. 涉及空腔制造的最小长度尺寸限制的清晰结构拓扑优化设计[J]. 机械工程学报,2019,55(19):174-185. RONG Jianhua,ZHAO Shenning,LI Fangyi,et al. Clear structural topology optimization designs including minimum allowable length scale limit on fabrication holes[J]. Journal of Mechanical Engineering,2019,55(19):174-185. [26] XU B,HAN Y,ZHAO L. Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints[J]. Applied Mathematical Modelling 2020,80(4):771-791. [27] KIYONO C Y,VATANABE S L,SILVA E C N,et al. A new multi-p-norm formulation approach for stress-based topology optimization design[J]. Composite Structures,2016,156(11):10-19. [28] SVANBERG K. The method of moving ssymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering,1987,24(2):359-373. [29] 吴一帆,郑百林,何旅洋,等. 结构拓扑优化变密度法的灰度单元等效转换方法[J]. 计算机辅助设计与图形学学报,2017,29(4):759-767. WU Yifan,ZHENG Bailin,HE lüyang,et al. Equivalent conversion method of gray-scale elements for SIMP in structures topology optimization[J]. Journal of Computer-Aided Design and Computer Graphics,2017,29(4):759-767. [30] WANG F,LAZAROV B S,SIGMUND O. On projection methods,convergence and robust formulations in topology optimization[J]. Structural and Multidisciplinary Optimization,2011,43(6):767-78. |