[1] 金淼,魏庆媛,董晓传,等. C形板预应力组合框架的预紧梁形状优化[J]. 中国机械工程,2013,24(23):3134-3139. JIN Miao,WEI Qingyuan,DONG Xiaochuan,et al. Shape optimization of clamping beam of pre-stressed C-plate composite frame[J]. China Mechanical Engineering,2013,24(23):3134-3139. [2] 郭宝峰,于琳琳,金淼,等. 预应力组合下横梁临界预紧力影响因素研究[J]. 中国机械工程,2013,24(19):2567-2572. GUO Baofeng,YU Linlin,JIN Miao,et al. Research on influence factors of critical pretension force in pre-stressed assembled lower beam[J]. China Mechanical Engineering,2013,24(19):2567-2572. [3] ASME. Boiler and pressure vessel code[S]. New York:The American Society of Mechanical Engineers,2007. [4] European Commission. EN-13445 Unfired pressure vessels[S]. Brussels:European Committee for Standardization,2002. [5] 郑小涛,轩福贞. 热-机载荷下厚壁圆筒自增强压力与安全性分析[J]. 机械工程学报,2010,46(16):156-161. ZHENG Xiaotao,XUAN Fuzhen. Investigation on autofrettage and safety of the thick-walled cylinder under thermo-mechanical loadings[J]. Journal of Mechanical Engineering,2010,46(16):156-161. [6] SURMIRI A,NAYEBI A,ROKHGIREH H. Shakedown-ratcheting analysis of Bree's problem by anisotropic continuum damage mechanics coupled with nonlinear kinematic hardening model[J]. International Journal of Mechanical Sciences,2018,137:295-303. [7] GONG Jianguo,NIU Tianye,CHEN Haofeng,et al. Shakedown analysis of pressure pipeline with an oblique nozzle at elevated temperatures using the linear matching method[J]. International Journal of Pressure Vessels and Piping,2018,159:55-66. [8] SIMON J W. Direct evaluation of the limit states of engineering structures exhibiting limited,nonlinear kinematical hardening[J]. International Journal of Plasticity,2013,42:141-167. [9] STEIN E,ZHANG Genbao,HUANG Y. Modeling and computation of shakedown problems for nonlinear hardening materials[J]. Computer Methods in Applied Mechanics and Engineering,1993,103(1-2):247-272. [10] ZHOU Jianqiang,SUN Zhidan,KANOUTÉ P,et al. Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime[J]. International Journal of Plasticity,2018,107:54-78. [11] XU Liyan,NIE Xin,FAN Jiansheng,et al. Cyclic hardening and softening behavior of the low yield point steel BLY160:Experimental response and constitutive modeling[J]. International Journal of Plasticity,2016,78:44-63. [12] 张娟. 循环硬化材料高温非比例循环棘轮行为的本构描述及其有限元实现[D]. 成都:西南交通大学,2006. ZHANG Juan. Constitutive description for non-proportionally ratcheting of cyclically hardening material and its finite element implementation at high temperatures[D]. Chengdu:Southwest Jiaotong University,2006. [13] 吴德龙. 载荷模式对9-12%Cr钢高温低周疲劳行为影响及循环本构研究[D]. 上海:华东理工大学,2016. WU Delong. Effect of control mode on high temperature low cycle fatigue behavior of 9-12%Cr steel and cyclic constitutive modeling[D]. Shanghai:East China University of Science and Technology,2016. [14] 张克实,董书惠,许凌波,等. ECAP对纯铜循环硬化/软化特性的改变[J]. 固体力学学报,2013,34(5):450-458. ZHANG Keshi,DONG Shuhui,XU Lingbo,et al. From cyclic hardening to cyclic softening:Transforming of an ECAP copper[J]. Chinese Journal of Solid Mechanics,2013,34(5):450-458. [15] FATOBA O,AKID R. Uniaxial cyclic elasto-plastic deformation and fatigue failure of API-5L X65 steel under various loading conditions[J]. Theoretical and Applied Fracture Mechanics,2018,94:147-159. [16] 张庆玲,金淼,张洪生,等. 小变形循环载荷下Q235材料特性的试验研究[J]. 机械工程学报,2017,53(20):69-76. ZHANG Qingling,JIN Miao,ZHANG Hongsheng,et al. Experiment research on material characteristics of Q235 under small deformation cyclic loading[J]. Journal of Mechanical Engineering,2017,53(20):69-76. [17] LOPEZ Z,FATEMI A. A method of predicting cyclic stress-strain curve from tensile properties for steels[J]. Materials Science & Engineering A,2012,556:540-550. [18] MAROHNIĆ T,BASAN R. Study of monotonic properties' relevance for estimation of cyclic yield stress and Ramberg-Osgood parameters of steels[J]. Journal of Materials Engineering and Performance,2016,25(11):4812-4823. [19] 郭宝峰,韩舒婷,邹宗园,等. 材料循环软化性能对安定极限载荷的影响[J]. 塑性工程学报,2019,26(4):241-247. GUO Baofeng,HAN Shuting,ZOU Zongyuan,et al. Effect of material cyclic softening on shakedown limit load[J]. Journal of Plasticity Engineering,2019,26(4):241-247. [20] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社,2010. General Administration of Quality Supervision,Inspection and Quarantine of the People's. GB/T 228.1-2010 Metallic materials-Tensile testing-Part 1:Method of test at room temperature[S]. Beijing:Standards Press of China,2010. [21] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 15248-2008金属材料轴向等幅低循环疲劳试验方法[S]. 北京:中国标准出版社,2008. General Administration of Quality Supervision,Inspection and Quarantine of the People's. GB/T 15248-2008 The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials[S]. Beijing:Standards Press of China,2008. [22] HSU T Y J,WANG Zhirui. Cyclic stress-strain response and microstructure evolution of polycrystalline Cu under pure compressive cyclic loading condition[J]. Materials Science and Engineering:A,2014,615:302-312. [23] MAROHNIC T,BASAN R,FRANULOVIC M. Evaluation of the possibility of estimating cyclic stress-strain parameters and curves from monotonic properties of Steels[J]. Procedia Engineering,2015,101:277-284. [24] ZOU Zongyuan,GUO Baofeng,LI Yinxiao,et al. Shakedown criterion employing actual residual stress field and its application in numerical shakedown analysis[J]. Chinese Journal of Mechanical Engineering,2015,28(5):919-927. [25] 董昊. 循环载荷作用下液压机横梁局部塑性变形的研究[D]. 秦皇岛:燕山大学,2018. DONG Hao. Study on local plastic deformation of a hydraulic press beam under cyclic loading[D]. Qinhuangdao:Yanshan University,2018. [26] 孙阳. 结构安定性数值分析方法及其工程应用研究[D]. 上海:上海交通大学,2011. SUN Yang. Numerical methods of shakedown analysis with its applications[D]. Shanghai:Shanghai Jiao Tong University,2011. |