[1] LEE J, WU Fangji, ZHAO Wenyu, et al. Prognostics and health management design for rotary machinery systemsreviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2):314-334. [2] YIN Shen, LI Xianwei, GAO Huijun, et al. Data-based techniques focused on modern industry:An overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):657-667. [3] 王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究"何去何从"[J]. 机械工程学报, 2013, 49(1):63-72. WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al. Basic research on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1):63-72. [4] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104. [5] CHEN Xuefeng,WANG Shibin,QIAO Baijie,et al. Basic research on machinery fault diagnostics:Past, present, and future trends[J]. Frontiers of Mechanical Engineering, 2018, 13(2):264-291. [6] FENG Zhipeng, LIANG Ming, CHU Fulei. Recent advances in time-frequency analysis methods for machinery fault diagnosis:a review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1):165-205. [7] LEI Yaguo, LIN Jing, HE Zhengjia, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2):108-126. [8] LI Yongbo, WANG Xianzhi, LIU Zhenbao, et al. The entropy algorithm and its variants in the fault diagnosis of rotating machinery:a review[J]. IEEE Access, 2018, 6:66723-66741. [9] WANG Yanxue, XIANG Jiawei, MARKERT R, et al. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines:a review with applications[J]. Mechanical Systems and Signal Processing, 2016, 66-67:679-698. [10] BIET M. Rotor faults diagnosis using feature selection and nearest neighbors rule:Application to a turbogenerator[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9):4063-4073. [11] ILLIAS H A, CHAI Xinrui, ABU BAKAR A H. Hybrid modified evolutionary particle swarm optimisation-time varying acceleration coefficient-artificial neural network for power transformer fault diagnosis[J]. Measurement, 2016, 90:94-102. [12] ZHANG Xiaoli, CHEN Wei, WANG Baojian, et al. Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization[J]. Neurocomputing, 2015, 167:260-279. [13] LEI Yaguo, JIA Feng, LIN Jing, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3137-3147. [14] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107:241-265. [15] ZHAO Rui, YAN Ruqiang, CHEN Zhenghua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115:213-237. [16] LEI Yaguo, ZUO M J, HE Zhengjia, et al. A multidimensional hybrid intelligent method for gear fault diagnosis[J]. Expert Systems with Applications, 2010, 37(2):1419-1430. [17] JIA Feng, LEI Yaguo, LIN Jing, et al. Deep neural networks:A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72-73:303-315. [18] LI Yongbo, YANG Yuantao, WANG Xianzhi, et al. Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine[J]. Journal of Sound and Vibration, 2018, 428:72-86. [19] ZHAO Rui, WANG Dongzhe, YAN Ruqiang, et al. Machine health monitoring using local geature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1539-1548. [20] SHAO Haidong, JIANG Hongkai, LIN Ying, et al. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102:278-297. [21] BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[C]//Advances in Neural Information Processing Systems, December 04-07, 2006, Canada. Massachusetts:MIT Press Cambridge, 2007:137-144. [22] SU Zuqiang, TANG Baoping, MA Jinghua, et al. Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier[J]. Measurement, 2014, 48:136-148. [23] JIA Feng, LEI Yaguo, GUO Liang, et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocomputing, 2018, 272:619-628. [24] LI Yongbo, YANG Yuantao, LI Guoyan, et al. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection[J]. Mechanical Systems and Signal Processing, 2017, 91:295-312. [25] YANG Bo Suk, XIAO Di, TIAN Han. Random forests classifier for machine fault diagnosis[J]. Journal of Mechanical Science and Technology, 2008, 22(9):1716-1725. [26] WANG Ziwei, ZHANG Qinghua, XIONG Jianbin, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J]. IEEE Sensors Journal, 2017, 17(17):5581-5588. [27] KUAI Moshen, CHENG Gang, PANG Yusong, et al. Research of planetary gear fault diagnosis based on permutation entropy of CEEMDAN and ANFIS[J]. Sensors, 2018, 18(3):782. [28] LEI Yaguo, HE Zhengjia, ZI Yanyang. A new approach to intelligent fault diagnosis of rotating machinery[J]. Expert Systems with Applications, 2008, 35(4):1593-1600. [29] VAPNIK V. The nature of statistical learning theory[M]. New York:Springer, 2000. [30] TAN P, STEINBACH M, KARPATNE A, et al. Introduction to data mining[M]. 2nd ed. Singapore:Pearson Education, 2011. [31] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016. [32] VACHTSEVANOS G, LEWIS F L, ROEMER M, et al. Intelligent fault diagnosis and prognosis for engineering systems:methods and case studies[M]. Wiley Online, 2006. [33] PHM Society. PHM 09 data challenge data[EB/OL].[2018-11-07]. https://www.phmsociety.org/competition/PHM/09/apparatus. [34] LOPARO K. Case Western Reserve University Bearing Data Center[EB/OL].[2018-11-07]. http://csegroups.case.edu/bearingdatacenter/pages/download-data-file. [35] BECHHOEFER E. Society for Machinery Failure Prevention Technology.[EB/OL].[2018-11-07]. https://mfpt.org/fault-data-sets/. [36] SHARMA V, PAREY A. A review of gear fault diagnosis using various condition indicators[J]. Procedia Engineering, 2016, 144:253-263. [37] CERRADA M, ZURITA G, CABRERA D, et al. Fault diagnosis in spur gears based on genetic algorithm and random forest[J]. Mechanical Systems and Signal Processing, 2016, 70-71:87-103. [38] LEI Yaguo, HE Zhengjia, ZI Yanyang. Application of an intelligent classification method to mechanical fault diagnosis[J]. Expert Systems with Applications, 2009, 36(6):9941-9948. [39] RANDALL R, ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2):485-520. [40] GRETTON A, BORGWARDT K M, RASCH M, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13:723-773. [41] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012. LI Hang. Statistical learning method[M]. Beijing:Tsinghua University Press, 2012. [42] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [43] PENG Hanchuan, LONG Fuhui, DING C. Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238. [44] 钟秉林,黄仁. 机械故障诊断学[M]. 3版. 北京:机械工业出版社, 2006. ZHONG Binglin, HUANG Ren. Introduction to machine fault diagnosis[M]. 3rd ed. Beijing:China Machine Press, 2006. [45] CAO R, CUEVAS A, MANTEIGA W. A comparative study of several smoothing methods in density estimation[J]. Computational Statistics & Data Analysis, 1994, 17(2):153-176. |