[1] 孟宗,关阳,潘作舟,等. 基于二次数据增强和深度卷积的滚动轴承故障诊断研究[J]. 机械工程学报,2021,57(23):106-115. MENG Zong,GUAN Yang,PAN Zuozhou,et al. Fault diagnosis of rolling bearing based on secondary data enhancement and deep convolutional network[J]. Journal of Mechanical Engineering,2021,57(23):106-115. [2] LI Y,WANG S,YANG Y,et al. Multiscale symbolic fuzzy entropy:An entropy denoising method for weak feature extraction of rotating machinery[J]. Mechanical Systems and Signal Processing,2022,162:108052. [3] 陈仁祥,吴昊年,张霞,等. 子空间嵌入特征分布对齐的不同工况下旋转机械复合故障诊断[J]. 机械工程学报,2021,57(2):21-29. CHEN Renxiang,WU Haonian,ZHANG Xia,et al. Compound fault diagnosis of rotating machinery under different conditions based on subspace embedded feature distribution alignment[J]. Journal of Mechanical Engineering,2021,57(2):21-29. [4] 周兴康,余建波. 基于深度一维残差卷积自编码网络的齿轮箱故障诊断[J]. 机械工程学报,2020,56(7):96-108. ZHOU Xingkang,YU Jianbo. Gearbox fault diagnosis based on one-dimension residual convolutional auto-encoder[J]. Journal of Mechanical Engineering,2020,56(7):96-108. [5] 沈长青,汤盛浩,江星星,等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报,2019,55(7):81-88. SHEN Changqing,TANG Shenghao,JIANG Xingxing,et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering,2019,55(7):81-88. [6] 陈祝云,钟琪,黄如意,等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报,2021,57(21):96-105. CHEN Zhuyun,ZHONG Qi,HUANG Ruyi,et al. Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J]. Journal of Mechanical Engineering,2021,57(21):96-105. [7] CHEN C,SHEN F,XU J,et al. Model parameter transfer for gear fault diagnosis under varying working conditions[J]. Chinese Journal of Mechanical Engineering,2021,34:1-13. [8] SHANG Z,ZHAO Z,YAN R. Denoising fault-aware wavelet network:A signal processing informed neural network for fault diagnosis[J]. Chinese Journal of Mechanical Engineering,2023,36(1):9. [9] XIA Y,SHEN C,WANG D,et al. Moment matching-based in traclass multisource domain adaptation network for bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2022,168:108697. [10] QIN Y,YAO Q,WANG Y,et al. Parameter sharing adversarial domain adaptation networks for fault transfer diagnosis of planetary gearboxes[J]. Mechanical Systems and Signal Processing,2021,160:107936. [11] LU N,YIN T. Transferable common feature space mining for fault diagnosis with imbalanced data[J]. Mechanical Systems and Signal Processing,2021,156:107645. [12] ZHANG Z,CHEN H,LI S,et al. Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis[J]. Measurement,2020,165:108071. [13] HAN T,LI Y F,QIAN M. A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-11. [14] ZHAO C,SHEN W. A domain generalization network combing invariance and specificity towards real-time intelligent fault diagnosis[J]. Mechanical Systems and Signal Processing,2022,173:108990. [15] RAGAB M,CHEN Z,ZHANG W,et al. Conditional contrastive domain generalization for fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-12. [16] SHAO S,WANG P,YAN R. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry,2019,106:85-93. [17] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial networks[J]. Communications of the ACM,2020,63(11):139-144. [18] LONG M,CAO Z,WANG J,et al. Conditional adversarial domain adaptation[J]. Advances in Neural Information Processing Systems,2018,31:1. [19] SAXE A M,BANSAL Y,DAPELLO J,et al. On the information bottleneck theory of deep learning[J]. Journal of Statistical Mechanics:Theory and Experiment,2019,2019(12):124020. [20] ZHAO L,LIU T,PENG X,et al. Maximum-entropy adversarial data augmentation for improved generalization and robustness[J]. Advances in Neural Information Processing Systems,2020,33:14435-14447. [21] ZHANG X,WANG J,JIA S,et al. Partial domain adaptation method based on class-weighted alignment for fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-14. [22] WANG Y,SUN X,LI J,et al. Intelligent fault diagnosis with deep adversarial domain adaptation[J]. IEEE Transactions on Instrumentation and Measurement,2020,70:1-9. [23] Van der MAATEN L,HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research,2008,9(11):2579-2605. |