• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (15): 110-120.doi: 10.3901/JME.2023.15.110

• 机械动力学 • 上一篇    下一篇

扫码分享

基于对抗熵的转子系统跨工况故障诊断方法

贾思祥, 孙丁一, 毛刚, 李永波   

  1. 西北工业大学航空学院 西安 710068
  • 收稿日期:2022-08-07 修回日期:2023-04-03 出版日期:2023-08-05 发布日期:2023-09-27
  • 通讯作者: 李永波(通信作者),男,1986年出生,博士,副教授,博士研究生导师。主要研究方向为重大装备早期故障表征、微弱信号优化检测、智能故障诊断。E-mail:yongbo@nwpu.edu.cn
  • 作者简介:贾思祥,男,1995年出生,博士研究生。主要研究方向为基于迁移学习的机械故障诊断。E-mail:sixiang_j@mail.nwpu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12172290)

Adversarial Entropy Based Fault Diagnosis Method for Rotor System Across Different Working Conditions

JIA Sixiang, SUN Dingyi, MAO Gang, LI Yongbo   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710068
  • Received:2022-08-07 Revised:2023-04-03 Online:2023-08-05 Published:2023-09-27

摘要: 传统数据驱动的故障诊断方法通常依赖于测试工况数据的可用性,然而转子系统实际运行工况多变,测试工况的先验数据分布难以获取,增加了跨工况故障诊断的难度。针对此问题,提出了基于对抗熵的域泛化网络(Adversarial entropy-based domain generalization network, AEDG)用于转子系统跨工况故障诊断。该方法受信息瓶颈理论与生成对抗网络启发,通过熵的最大最小化博弈实现潜在数据分布的对抗性扰动,旨在提高诊断模型在未知工况下的泛化能力。首先建立条件对抗域适应网络,通过多线性映射融合深度嵌入特征与分类器预测输出,实现多源域诊断知识的深度融合。为进一步提高模型在未知工况下的泛化性能,通过多源域联合嵌入特征的预测输出信息熵最大最小化实现底层数据的对抗性扰动,增强模型对未知工况下数据分布漂移的适应能力。最后采用转子系统故障数据集验证了提出方法的有效性,结果表明提出方法具有良好的跨工况识别精度与泛化能力。

关键词: 故障诊断, 转子系统, 熵, 信息瓶颈理论, 域泛化

Abstract: Traditional data-driven fault diagnosis methods often rely on the availability of test condition data, but the actual operating conditions of rotor system are changeable, and the prior data distribution of test condition is difficult to obtain, which increase the difficulty of fault diagnosis across different working conditions. To solve this problem, an adversarial entropy-based domain generalization network (AEDG) is proposed for fault diagnosis of rotor system. Inspired by information bottleneck theory and generative adversarial network, this method achieves the antagonistic disturbance of potential data distribution through minimax entropy, which aims at improving the generalization ability of diagnostic model under unknown conditions. First, through multi-linear mapping fusion of deep embedding feature and the prediction output of classifier, the conditional adversarial domain adaptation network is established to realize the deep fusion of multi-source domain diagnosis knowledge. To further improve the generalization performance of the model under unknown working conditions, the entropy of prediction output of multi-source joint embedding features was minimized to realize the disturbance of the underlying data, which enhances the adaptability to the distribution shift under unknown working conditions. Finally, two fault datasets of rotor system are used to verify the effectiveness of the proposed method, and the results show that the proposed method has good identification accuracy and generalization ability across different working conditions.

Key words: fault diagnosis, rotor system, entropy, information bottleneck theory, domain generalization

中图分类号: