机械工程学报 ›› 2020, Vol. 56 ›› Issue (24): 1-23.doi: 10.3901/JME.2020.24.001
• 仪器科学与技术 • 下一篇
王志学1,2, 刘献礼1, 李茂月1, LIANG S Y3, 王力翚4, 李玉强1, 孟博洋1
收稿日期:
2019-12-24
修回日期:
2020-06-30
出版日期:
2020-12-20
发布日期:
2021-02-05
通讯作者:
刘献礼(通信作者),男,1961年出生,教授,博士研究生导师。主要研究方向为金属切削理论及刀具技术、数字化加工技术。E-mail:xlliu@hrbust.edu.cn
作者简介:
王志学,男,1989年出生,博士研究生。主要研究方向为信号处理、智能加工、开放式数控。E-mail:wzxyx126@126.com;李茂月,男,1981年出生,副教授,博士,硕士研究生导师。主要研究方向为智能加工、开放式数控、数控插补等。E-mail:lmy0500@163.com
基金资助:
WANG Zhixue1,2, LIU Xianli1, LI Maoyue1, LIANG S Y3, WANG Lihui4, LI Yuqiang1, MENG Boyang1
Received:
2019-12-24
Revised:
2020-06-30
Online:
2020-12-20
Published:
2021-02-05
摘要: 切削加工颤振智能监控技术是智能机床中不可或缺的一部分,是智能加工的一个重要发展方向。它对于提高零件的加工精度与效率,增加企业的运营绩效具有重要的意义。以传感器的选择、特征提取、颤振识别和颤振抑制为主线,系统的综述了切削加工过程中颤振智能监控的研究进展。分析颤振信号的选择和时域、频域、时频域以及特征自适应智能提取的特征提取方法;分析神经网络、支持向量机、隐马尔科夫模型、混合模型和在线智能进化模型在颤振识别中的应用;着重分析基于主轴转速调整的颤振智能控制方法。在此基础上,对切削加工颤振智能监控的研究难点进行了分析,并总结了目前存在的问题。最后,对切削加工颤振智能监控技术今后的发展趋势进行了展望。
中图分类号:
王志学, 刘献礼, 李茂月, LIANG S Y, 王力翚, 李玉强, 孟博洋. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23.
WANG Zhixue, LIU Xianli, LI Maoyue, LIANG S Y, WANG Lihui, LI Yuqiang, MENG Boyang. Intelligent Monitoring and Control Technology of Cutting Chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23.
[1] 胡瑞飞,殷鸣,刘雁,等. 切削稳定性约束下的铣削参数优化技术研究[J]. 机械工程学报,2017,53(5):190-198. HU Ruifei,YIN Ming,LIU Yan,et al. Optimization of milling parameters under constrain of process stability[J]. Journal of Mechanical Engineering,2017,53(5):190-198. [2] QUINTANA G,CIURANA J. Chatter in machining processes:A review[J]. International Journal of Machine Tools and Manufacture,2011,51(5):363-376. [3] MUNOA J,BEUDAERT X,DOMBOVARI Z,et al. Chatter suppression techniques in metal cutting[R]. CIRP Annals-Manufacturing Technology,2016. [4] 刘献礼,刘强,岳彩旭,等. 切削过程中的智能技术[J].机械工程学报,2018,54(16):45-61. LIU Xianli,LIU Qiang,YUE Caixu,et al. Intelligent machining technology in cutting process[J]. Journal of Mechanical Engineering,2018,54(16):45-61. [5] TANGJITSITCHAROEN S,SAKSRI T,RATANAKUA KANGWA S. Advance in chatter detection in ball end milling process by utilizing wavelet transform[J]. Journal Of Intelligent Manufacturing,2015,26:485-499. [6] PEZZULLO V N. Design of a custom software appli-cation to monitor and communicate cnc machining process information to aid in chatter identification[D]. Greenville:Clemson University,2014. [7] HUANG Panling,LI Jianfeng,SUN Jie,et al. Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill[J]. International Journal of Advanced Manufacturing Technology,2012,58:153-160. [8] FENG Jilu,SUN Zhili,JIANG Zenghui,et al. Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography[J]. International Journal of Advanced Manufacturing Technology,2015,82(9-12):1909-1920. [9] TLUSTY J,ANDREWS G C. A critical review of sensors for unmanned machining[J]. CIRP Annals Manufacturing Technology,1983,32:563-572. [10] 李茂月,富宏亚,韩振宇. 开放式智能控制器的设计与加工实现[J].计算机集成制造系统,2011,17(7):1441-1447. LI Maoyue,FU Hongya,HAN Zhenyu. Design and machining for open intelligent controller[J]. Computer Integrated Manufacturing Systems,2011,17(7):1441-1447. [11] 李茂月. 开放式智能数控系统及其在线控制相关技术研究[D]. 哈尔滨:哈尔滨工业大学,2012. LI Maoyue. Research on related technologies of an open architecture intelligent cnc system and online control[D]. Harbin:Harbin Institute of Technology,2012. [12] FRUMUSANU G R,CONSTANTIN I C,MARINESCU V,et al. Development of a stability intelligent control system for turning[J]. International Journal of Advanced Manufacturing Technology,2013,64(5-8):643-657. [13] 王国锋,李志猛,董毅. 刀具状态智能监测研究进展[J].航空制造技术,2018(6):16-23. WANG Guofeng,LI Zhimeng,DONG Yi. Recent advances in intelligent monitoring of cutting tool condition[J]. Aeronautical Manufacturing Technology,2018(6):16-23. [14] FAN Nan. Technical research on on-line monitoring of cutting chatter[D]. Xi'an:Xian Jiaotong University,2011. [15] FU Yang,ZHANG Yun,ZHOU Huamin,et al. Timely online chatter detection in end milling process[J]. Mechanical Systems and Signal Processing,2016,75:668-688. [16] DONG Xinfeng,ZHANG Weimin. Chatter identification in milling of the thin-walled part based on complexity index[J]. International Journal of Advanced Manufacturing Technology,2017,91(9-12):3327-3337. [17] JI Yongjian,WANG Xibin,LIU Zhibing,et al. EEMD-based online milling chatter detection by fractal dimension and power spectral entropy[J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):1185-1200. [18] LIU Jie,HU Youmin,WU Bo,et al. A hybrid health condition monitoring method in milling operations[J]. International Journal of Advanced Manufacturing Technology,2017,92:2069-2080. [19] KANG Jing,FENG Changjian,HU Hongying,et al. Research on chatter prediction and monitor based on DHMM pattern recognition theory[C]//2007 IEEE International Conference on Automation and Logistics,Jinan:IEEE,2007:1368-1372. [20] BAHR B,MOTAVALLI S,ARFI T. Sensor fusion for monitoring machine tool conditions[J]. International Journal of Computer Integrated Manufacturing,1997,10(5):314-323. [21] DELIO T,TLUSTY J,SMITH S. Use of audio signals for chatter detection and control[J]. ASME Journal Engineering for Industry 1992,114:146-157. [22] GAO Jian,SONG Qinghua,LIU Zhanqiang. Chatter detection and stability region acquisition in thin-walled workpiece milling based on CMWT[J]. International Journal of Advanced Manufacturing Technology,2018, 98(1-4):699-713. [23] SALLESE L,GROSSI N,SCIPPA A,et al. Investigation and correction of actual microphone response for chatter detection in milling operations[J]. Measurement and Control,2017,50(2):45-52. [24] TSAI N C,CHEN D C,LEE R M. Chatter prevention for milling process by acoustic signal feedback[J].International Journal of Advanced Manufacturing Technology,2010,47(9-12):1013-1021. [25] CAO Hongrui,YUE Yiting,CHEN Xuefeng,et al. Chatter detection in milling process based on synchrosqueezing transform of sound signals[J]. International Journal of Advanced Manufacturing Technology,2016,89(9-12):2747-2755. [26] HYNYNEN K M,RATAVA J,LINDH T,et al. Chatter detection in turning processes using coherence of acceleration and audio signals[J]. Journal of Manufacturing Science and Engineering,2014,136(4):1-14. [27] SIDDHPURA M,PAUROBALLY R. A review of chatter vibration research in turning[J]. International Journal of Machine Tools & Manufacture,2012,61:27-47. [28] TETI R,JEMIELNIAK K,O'DONNELL G,et al. Advanced monitoring of machining operations[J]. Cirp Annals-Manufacturing Technology,2010,59(2):717-739. [29] CHIOU R Y,LIANG S Y. Analysis of acoustic emission in chatter vibration with tool wear effect in turning[J]. International Journal of Machine Tools and Manufacture,2000,40:927-941. [30] GRIFFIN J M,CHEN X. Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming[J]. International Journal of Advanced Manufacturing Technology,2009,45(11-12):1152-1168. [31] GRADISEK J,BAUS A,GOVEKAR E,et al. Automatic chatter detection in grinding[J]. International Journal of Machine Tools and Manufacture,2003,43(14):1397-1403. [32] LI X Q,WONG Y S,NEE A Y C. A comprehensive identification of tool failure and chatter using a parallel multi-ART2 neural network[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,1998,120(2):433-442. [33] CHUNG E S,CHIOU Y S,LIANG S Y. Tool wear and chatter detection in turning via time-series modeling and frequency band averaging[J]. American Society of Mechanical Engineers,1993(5),351-358. [34] SOLIMAN E,ISMAIL F. Chatter detection by monitoring spindle drive current[J]. International Journal of Advanced Manufacturing Technology,1997,13(1):27-34. [35] LIU Hongqi,CHEN Qinghai,LI Bin,et al. On-line chatter detection using servo motor current signal in turning[J]. China Technol,2011,54(12):3119-3129. [36] LAMRAOUI M,BADAOUI M E,GUILLET F. Chatter detection in cnc milling processes based on wiener-SVM approach and using only motor current signals[C]//Proceedings of VETOMAC X 2014,University of Manchester,UK,September 9-11,2014. Switzerland:Springer,2015:567-578. [37] KAKINUMA Y,SUDO Y,AOYAMA T. Detection of chatter vibration in end milling applying disturbance observer[J]. CIRP Annals-Manufacturing Technology,2011,60:109-112. [38] ASLAN D,ALTINTAS Y. On-line chatter detection in milling using drive motor current commands extracted from CNC[J]. International Journal of Machine Tools and Manufacture,2018,132:64-80. [39] MILTON L P,WALTER L W,ROLF B S,et al. Analysis of high speed milling dynamicstability through sound pressure,machining force and tool displacement measurements[J]. Journal of Engineering Manufacture,2012,226(11):174-1783. [40] TANGJITSITCHAROEN S,RUNGRUANG C,PONGSATHORNWIWAT N. Advanced monitoring of tool wear and cutting states in CNC turning process by utilizing sensor fusion[J]. Advanced Materials Research Vols,2011,189-193:377-384. [41] DENKENA B,ORTMAIER T,BERGMANN B,et al. Suitability of integrated sensors for the determination of chatter characteristics in a cylindrical grinding machine[J]. International Journal of Advanced Manufacturing Technology,2019,102:2339-2344. [42] KULJANIC E,SORTINO M,TOTIS G. Multisensor approaches for chatter detection in milling[J]. Journal of Sound and Vibration,2008(10):672-693. [43] KULJANIC E,TOTIS G,SORTINO M. Development of an intelligent multisensory chatter detection system in milling[J]. Mechanical Systems and Signal Processing,2009,23(5):1704-1718. [44] TANGJITSITCHAROEN S,NARONGSAK P. Development of chatter detection in milling processes[J]. International Journal of Advanced Manufacturing Technology,2013,65:919-927. [45] WAN Shaoke,LI Xiaohu,CHEN Wei,et al. Investigation on milling chatter identification at early stage with variance ratio and Hilbert-Huang transform[J]. International Journal of Advanced Manufacturing Technology,2018,95(9-12):3563-3573. [46] YE Jian,FENG Pingfa,XU Chao,et al. A novel approach for chatter online monitoring using coefficient of variation in machining process[J]. International Journal of Advanced Manufacturing Technology,2018,96:287-297. [47] LAMRAOUI M,BARAKAT M,THOMAS M,et al. Chatter detection in milling machines by neural network classification and feature selection[J]. Journal of Vibration and Control,2015,21(7):1251-1266. [48] LIU Yilong,WU Baohai,MA Junjin,et al. Chatter identification of the milling process considering dynamics of the thin-walled workpiece[J]. International Journal of Advanced Manufacturing Technology,2016,89(5-8):1765-1773. [49] NAIR U,KRISHNA B M,NAMBOOTHIRI V N N,et al. Permutation entropy based real-time chatter detection using audio signal in turning process[J]. International Journal of Advanced Manufacturing Technology,2010,46:61-68. [50] TOH C K. Vibration analysis in high speed rough and finish milling hardened steel[J]. Journal of Sound and Vibration,2004,278(1-2):101-115. [51] FEKRMANDI H,UNAL M,BAGHALIAN A,et al. A non-contact method for part-based process performance monitoring in end milling operations[J]. International Journal of Advanced Manufacturing Technology,2016,83:13-20. [52] TANGJITSITCHAROEN S. In-process monitoring and detection of chip formation and chatter for CNC turning[J]. Journal of Materials Processing Technology,2009,209(10):4682-4688. [53] SUN Yuxin,ZHUANG Chungang,XIONG Zhenhua. A scale factor-based interpolated dft for chatter frequency estimation[J]. IEEE Transactions On Instrumentation And Measurement,2015,64(10):2666-2678. [54] ZHANG Chunliang,YUE Xia,ZHANG Xuewen. Cutting chatter monitoring using hidden markov models[C]//International Conference on Control,Automation and Systems Engineering,2009,July 11-12,Zhangjiajie,China. IEEE,2009:504-507. [55] LIAO Y S,YOUNG Y C. A new on-line spindle speed regulation strategy for chatter control[J]. International Journal of Machine Tools and Manufacture,1996,36(5):651-660. [56] ZHANG Chunlin,LI Bing,CHEN Binqiang,et al.Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform[J]. Mechanical Systems&Signal Processing,2015,64-65:162-187. [57] SOMKIAT T. Analysis of chatter inball end milling by wavelet transform[J]. World Academy of Science,Engineering and Technology,2012,71:1075-1081. [58] SOMKIAT T,TANINTORN S,SUTHAS R. Advance in chatter detection in ball end milling process by utilizing wavelet transform[J]. International Journal of Advanced Manufacturing Technology,2015,26:485-499. [59] CHEN G S,ZHENG Q Z. Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination[J]. International Journal of Advanced Manufacturing Technology,2018,95(1-4):775-784. [60] YAO Zhehe,MEI Deqing,CHEN Zichen. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology,2010,210(5):713-719. [61] YESILLI M C,KHASAWNEH F A,OTTO A. On transfer learning for chatter detection in turning using wavelet packet transform and empirical mode decomposition[J]. CIRP Journal of Manufacturing Science and Technology,2020,28:118-135. [62] KAMARTHI S V,PITTNER S. Fourier and wavelet transform for flank wear estimation-A comparison[J]. Mechanical Systems and Signal Processing,1997,11(6):791-809. [63] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society,1998,454(1971):903-995. [64] 李尧,刘强. 基于小波包及Hilbert-Huang变换的数控铣削颤振诊断技术[J]. 计算机集成制造系统,2015,21(1):204-216. LI Yao,LIU Qiang. Chatter identification in CNC milling based on wallet packet and Hilbert-Huang transform[J]. Computer Integrated Manufacturing Systems,2015,21(1):204-216. [65] SHRIVASTAVA Y,SINGH B. Possible way to diminish the effect of chatter in CNC turning based on EMD and ANN approaches[J]. Arabian Journal for Science and Engineering,2018,43:4571-4591. [66] LIU Changfu,ZHU Lida,NI Chenbing. The chatter identification in end milling based on combining EMD and WPD[J]. International Journal of Advanced Manufacturing Technology,2017,91(9-12):3339-3348. [67] CHEN Huanguo,SHEN Jianyang,CHEN Wenhua,et al. Grinding chatter detection and identifcation based on BEMD and LSSVM[J]. Chinese Journal of Mechanical Engineering,2019,32(1):90-102. [68] NIU Mingfei,HU Yueyong,SUN Shaolong,et al.A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting[J]. Applied Mathematical Modelling,2018,57:163-178. [69] 唐贵基,王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报,2016,29(4):638-648. TANG Guiji,WANG Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering,2016,29(4):638-648. [70] 石敏,李影,王冰,等. 基于变分模态分解的齿轮箱故障诊断[J]. 电力科学与工程,2016,32(1):23-26. SHI Min,LI Ying,WANG Bing,et al. Gearbox fault diagnosis based on variational mode decomposition[J]. Electric Power Science and Engineering,2016,32(1):23-26. [71] WANG Yanxue,RICHARD M,XIANG Jiawei,et al. Research on variational mode decomposition and its in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing,2015,60:243-251. [72] LIU Changfu,ZHU Lida,NI Chenbing. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing,2018,105:169-182. [73] 刘长福,朱立达,仇健,等. 基于VMD和FFT的变切深侧铣颤振特征提取方法[J]. 东北大学学报,2018,39(8):1153-1157. LIU Changfu,ZHU Lida,QIU Jian,et al. Chatter feature extraction method in variable cutting depth flank milling based on VMD and FFT[J]. Journal of Northeastern University,2018,39(8):1153-1157. [74] YANG Kai,WANG Guofeng,DONG Yi,et al. Early chatter identification based on an optimized variational mode decomposition[J]. Mechanical Systems and Signal Processing,2019,115:238-254. [75] 张明锴. 基于残差卷积网和支持向量机的机器人铣削颤振辨识研究[D]. 武汉:华中科技大学,2019. ZHANG Mingkai. Study of chatter identification of robot milling based on resnet and SVM[D]. Wuhan:Huazhong University of Science and Technology,2019. [76] FU Yang,ZHANG Yun,QIAO Haiyu,et al. Analysis of feature extracting ability for cutting state monitoring using deep belief networks[C]//15th CIRP Conference on Modelling of Machining Operations,2015,June 11-12,Karlsruhe,Germany. Elsevier,2015:29-34. [77] TARNG Y S,CHEN M C. An intelligent sensor for detection of milling chatter[J]. Journal of Intelligent Manufacturing,1994,5(3):193-200. [78] KUMAR S,SINGH B. Chatter prediction using merged wavelet denoising and ANFIS[J]. Methodologies And Application,2019,23:4439-4458. [79] 薛宁静. 多类支持向量机分类器对比研究[J]. 计算机工程与设计,2011,32(5):1792-1795. XUE Ningjing. Comparison of multi-class support vector machines[J]. Computer Engineering and Design,2011,32(5):1792-1795. [80] WANG Yongqing,BO Qile,LIU Haibo,et al. Mirror milling chatter identification using Q-factor and SVM[J]. International Journal of Advanced Manufacturing Technology,2018,98(5-8):1163-1177. [81] 吴石,刘献礼,王艳鑫. 基于连续小波和多类球支持向量机的颤振预报[J]. 振动、测试与诊断,2012,32(1):46-50. WU Shi,LIU Xianli,WANG Yanxin. Chatter prediction based on continuous wavelet features and multrclass spherical support vector machine[J]. Journal of Vibration,Measurement and Diagnosis,2012,32(1):46-50. [82] 韩振宇,金鸿宇,富宏亚. 基于ESPRIT频谱估计和隐马尔可夫模型的铣削颤振辨识系统建模[J]. 计算机集成制造系统,2016,22(8):1938-1944. HAN Zhenyu,JIN Hongyu,FU Hongya. Modeling of chatter recognition system in CNC milling based on ESPRIT and hidden Markov model[J]. Computer Integrated Manufacturing Systems,2016,22(8):1938-1944. [83] SHAO Qiang,SHAO Cheng,GUAN Lina. Pattern recognition of chatter gestation based on SVM-HMM method[C]//2009 IEEE International Conference on Automation and Logistics,Shenyang:IEEE,2009:1489-1494. [84] ZHANG Chunliang,YUE Xia,JIANG Yongtao,et al. A hybrid approach of ANN and HMM for cutting chatter monitoring[J]. Advanced Materials Research,2010,97-101:3225-3232. [85] 李欣,邓小雷,张玉良,等. 基于隐马尔科夫模型和支持向量机的曲面加工颤振识别与预报[J]. 航空制造技术,2019,62(6):14-20. LI Xin,DENG Xiaolei,ZHANG Yuliang,et al. Chatter recognition and prediction for curve surface processing based on HMM and SVM[J]. Aeronautical Manufacturing Technology,2019,62(6):14-20. [86] CHEN Yuantao,XIONG Jie,XU Weihong,et al. A novel online incremental and decremental learning algorithm based on variable support vector machine[J]. Cluster Computing,2019,22:7435-7445. [87] 刘敏,张英堂,李志宁,等. 基于增量稀疏核极限学习机的柴油机故障在线诊断[J]. 上海交通大学学报,2019,53(2):217-224. LIU Min,ZHANG Yingtang,LI Zhining,et al. Diesel engine fault online diagnosis method based on incremental sparse kernel extreme learning machine[J]. Journal of Shanghai Jiao Tong University,2019,52(2):217-224. [88] 钱士才,孙宇昕,熊振华. 基于支持向量机的颤振在线智能检测[J]. 机械工程学报,2015,51(20):1-8. QIAN Shicai,SUN Yuxin,XIONG Zhenhua. Support vector machine based online intelligent chatter detection[J]. Journal of Mechanical Engineering,2015,51(20):1-8. [89] 于英华,徐兴强,徐平. 切削颤振的在线监测与控制研究现状分析[J]. 振动与冲击,2007,26(1):130-132,135. YU Yinghua,XU Xingqiang,XU Ping. A review of on-line monitoring and control for machine tool chatter[J]. Journal of Vibration And Shock,2007,26(1):130-132,135. [90] 王跃辉,王民. 金属切削过程颤振控制技术的研究进展[J]. 机械工程学报,2010,46(7):166-174. WANG Yuehui,WANG Min. Advances on machining chatter suppression research[J]. Journal of Mechanical Engineering,2010,46(7):166-174. [91] ALTINTAS Y,CHAN P K. In-process detection & suppression of chatter in milling[J]. International Journal of Machine Tools and Manufacture,1992,32(3):329-347. [92] JAYARAM S,KAPOOR S G,DEVOR R E. Analytical stability analisis of variable spindle speed machining[J]. Journal of Manufacturing Science and EngiNeering,2000,122:391-397. [93] ISHIBASHI T,FUJIMOTO H,ISHII S,et al. High frequency variation speed control of spindle motor for chatter vibration suppression in nc machine tools[C]//American Control Conference,2014,Jun 4-6,Portland:IEEE,2014:2172-2177. [94] RIGELSFORD J. Manufacturing automation:Metal cutting mechanics,machine tool vibrations,and cnc design[J]. Industrial Robot,2004,31:1. [95] SEXTON J S,MILNE R D,STONE B J. A stability analysis of single-point machining with varying spindle speed[J]. Applied Mathematical Modelling,1997,1(6):310-312. [96] ALREGIB E,NI J,LEE S H. Programming spindle speed variation for machine tool chatter suppression[J]. International Journal of Machine Tools and Manufacture,2003,43(12):1229-1240. [97] ZATARAIN M,BEDIAGA I,MUNOA J,et al. Stability of milling processes with continuous spindle speed variation:analysis in the frequency and time domains,and experimental correlation[J]. CIRP Ann-Manuf. Technol.,2008,57(1):379-84. [98] ZHANG H H,JACKSON M J,NI J. Spindle speed variation method for regenerative machining chatter control[J]. International Journal of Nanomanufacturing,2009,3(1-2):73-99. [99] WU Dan,CHEN Ken. Chatter suppression in fast tool servo-assisted turning by spindle speed variation[J]. International Journal of Machine Tools and Manufacture,2010,50(12):1038-1047. [100] SEGUY S,INSPERGER T,ARNAUD L,et al. Suppression of period doubling chatter in high-speed milling by spindle speed variation[J]. Mach Sci Technol,2011,15(2):153-171. [101] FUKAGAWA S,FUJIMOTO H,TERADA Y. Experimental verification of chatter suppression in end milling process using cooperative control of spindle and stage motors[C]//41st Annual Conference of the IEEE Industrial Electronics Society,2015,November,9-12. Yokohama:IECON,2015:2794-2799. [102] JIN Gang,QI Houjun,LI Zhanjie,et al. Dynamic modeling and stability analysis for the combined milling system with variable pitch cutter and spindle speed variation[J]. Communications in Nonlinear Science and Numerical Simulation,2018,63:38-56. [103] SMITH S,TLUSTY J. Stabilizing chatter by automatic spindle speed regulation[J]. CIRP Annals,1992,41(1):433-436. [104] ISMAIL F,ZIAEI R. Chatter suppression in five-axis machining of flexible parts[J]. International Journal of Machine Tools and Manufacture,2002,42(1):115-122. [105] BEDIAGA I,MUNOA J,HERNANDEZ J,et al. An automatic spindle speed selection strategy to obtain stability in high-speed milling[J]. International Journal of Machine Tools & Manufacture,2009,49(5):384-394. [106] MORITA H,YAMASHITA T,Tracing and visualizing variation of chatter for in-process identification of preferred spindle speeds[C]//3rd CIRP Conference on Process Machine Interactions,29-30 October 2012,Nagoya,Japan. CIRP,2012:11-16. [107] 李茂月,韩振宇,富宏亚,等. 基于开放式控制器的铣削颤振在线抑制[J]. 机械工程学报,2012,48(17):172-182. LI Maoyue,HAN Zhenyu,FU Hongya,et al. Online milling chatter suppression based on open architecture controller[J]. Journal of Mechanical Engineering,2012,48(17):172-182. [108] 金鸿宇. 薄壁件侧铣颤振与变形实时监控技术研究[D]. 哈尔滨:哈尔滨工业大学,2017. JIN Hongyu. Real-time monitoring and control for chatter and deflection of thin-walled parts in flank milling[D]. Harbin:Harbin Institute of Technology,2017. [109] Machining Navi[EB/OL].[2019-07-01]. https://www.okuma.co.jp/chinese/onlyone/process/index.html. |
[1] | 刘阔, 姜业明, 黄任杰, 李明禹, 陈虎, 王永青. 虑及颤振在线抑制的机床高效自适应加工技术研究[J]. 机械工程学报, 2024, 60(6): 104-113. |
[2] | 裴昊男, 杜思哲, 罗明. W形金属封严环成形型面几何质量在机检测研究[J]. 机械工程学报, 2024, 60(20): 35-50. |
[3] | 段书用, 杨建华, 韩旭, 刘桂荣. 高维数据自适应降维方法[J]. 机械工程学报, 2024, 60(17): 283-296. |
[4] | 袁静, 任港星, 蒋会明, 赵倩, 魏臣隽, 朱骏. 基于多元提升核神经网络的机械故障诊断方法及其特征提取可解释性研究[J]. 机械工程学报, 2024, 60(12): 51-64. |
[5] | 王振亚, 刘韬, 伍星. 互信息规范的卷积神经网络及其在轴承故障特征提取中的应用[J]. 机械工程学报, 2024, 60(12): 137-146. |
[6] | 薛红涛, 丁殿勇, 李汭铖, 徐兴. 基于分量加权重构和稀疏NMF的轮毂电机轴承复合故障特征提取方法[J]. 机械工程学报, 2023, 59(9): 146-156. |
[7] | 赵志斌, 王晨希, 张兴武, 陈雪峰, 李应红. 激光粉末床熔融增材制造过程智能监控研究进展与挑战[J]. 机械工程学报, 2023, 59(19): 253-276. |
[8] | 肖乾, 周前哲, 程玉琦, 王一凡, 姜雄峰, 张培东. 高速列车车轮磨耗型面特征提取及参数化描述方法研究[J]. 机械工程学报, 2023, 59(14): 245-253. |
[9] | 胡文扬, 王天杨, 张飞斌, 褚福磊. 仿真驱动下基于Ramanujan周期变换的轴承早期故障特征提取[J]. 机械工程学报, 2023, 59(13): 148-156. |
[10] | 郑琛, 丁康, 何国林, 林慧斌, 蒋飞. 冲击响应机理驱动稀疏表示自编码网络的滚动轴承故障特征提取[J]. 机械工程学报, 2023, 59(13): 175-183. |
[11] | 申东旭, 吕超, 葛亚明, 张刚, 杨大智, 王立欣. 基于机械振动信号的锂离子电池组连接故障诊断[J]. 机械工程学报, 2022, 58(22): 56-68. |
[12] | 彭长青, 尚荣艳, 方瑞明. 基于物联网的有载分接开关智能监测的关键技术*[J]. 电气工程学报, 2022, 17(2): 194-200. |
[13] | 崔玲丽, 刘银行, 王鑫. 基于改进奇异值分解的滚动轴承微弱故障特征提取方法[J]. 机械工程学报, 2022, 58(17): 156-169. |
[14] | 苗宝权, 陈长征, 罗园庆, 赵思雨. 基于自适应增强差分积形态滤波器的滚动轴承故障特征提取方法[J]. 机械工程学报, 2021, 57(9): 78-88. |
[15] | 巫晓康, 赵欢, 唐敏杰, 丁汉. 面向动作识别的旋转投影变换关节特征骨架描述[J]. 机械工程学报, 2021, 57(5): 19-30. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2236
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1295
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||