[1] 陈清泉,孙立清. 电动汽车的现状和发展趋势[J]. 科技导报, 2005, 23:24-28. CHEN Qingquan, SUN Liqing. The present situation and development trend of electric vehicles[J]. Science and Technology Report, 2005, 23:24-28. [2] 何向明,冯旭宁,欧阳明高. 车用锂离子动力电池系统的安全性[J]. 科技导报, 2016, 34(6):32-38. HE Xiangming, FENG Xuning, OUYANG Minggao. Safety of lithium-ion power battery system for vehicle[J]. Science and Technology Report, 2016, 34(6):32-38. [3] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京:清华大学, 2016. FENG Xuning, Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle:Test, modeling and prevention[D]. Beijing:Tsinghua University, 2016. [4] 梁波. 锂离子电池安全性能研究[M]. 长沙:中南大学出版社, 2014. LIANG Bo. Research on the safety performance of lithium-ion batteries[M]. Changsha:Central South University Press, 2014. [5] 温泉,盛苗苗,董天哥. 论新能源汽车锂离子电池的安全问题[J]. 机械制造, 2019, 57(1):55-56, 93. WEN Quan, SHENG Miaomiao, DONG Tiange. Discussion on the safety of lithium-ion batteries for new energy vehicles[J]. Machinery Manufacturing, 2019, 57(1):55-56, 93. [6] 高飞朱,艳丽,齐创,等. 锂离子电池安全事故激源浅析[J]. 电源技术, 2019, 43(3):453-457. GAO Feizhu, YAN Li, QI Chuang, et al. Excitation source analysis of lithium-ion batteries safety accidents[J]. Power Supply Technology, 2019, 43(3):453-457. [7] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1):81-100. [8] MALEKI H, HOWARD J. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 192:568-574. [9] ORENDOFF C. The role of separators in lithium-ion cell safety[J]. Electrochemical Society Interface, 2012, 21:61-65. [10] REICHL T, HRZINA P. Capacity detection of internal short circuit[J]. Journal of Energy Storage, 2018, 15:345-349. [11] CHEN M, BAI F, SONG W, et al. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process[J]. Applied Thermal Engineering, 2017, 120:506-516. [12] ORENDORFF J, ROTH P, NAGASUBRAMANIAN G. Experimental triggers for internal short circuits in lithium-ion cells[J]. Journal of Power Sources, 2011, 196(15):6554-6558. [13] NOELLE D, WANG M, LE A, et al. Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting[J]. Applied Energy, 2018, 212:796-808. [14] WANG M,LE A,NOELLE D,et al. Internal-short-mitigating current collector for lithium-ion battery[J]. Journal of Power Sources, 2017, 349:84-93. [15] WANG H, SIMUNOVIC S, MALEKI H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit[J]. Journal of Power Sources, 2016, 306:424-430. [16] CAI W, WANG H, MALEKI H, et al. Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells[J]. Journal of Power Sources, 2011, 196(18):7779-7783. [17] NAGUIB M, ALLU S, SIMUNOVIC S, et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant li-ion batteries[J]. Joule, 2018(2):155-167. [18] OUYANG M, ZHANG M, FENG X, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294:272-383. [19] FENG X, PAN Y, HE X, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18:26-39. [20] FENG X, WENG C, OUYANG M, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161:168-180. [21] KONG X, ZHENG Y, OUYANG M, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395:358-368. [22] ZHANG M, LIU L, STEFANOPOULOU A, et al. Fusing phenomenon of lithium-ion battery internal short circuit[J]. Journal of the Electrochemical Society, 2017, 164:2738-2745. [23] RAGO N, BARENO J, LI J, et al. Effect of overcharge on Li(Ni 0.5 Mn 0.3 Co 0.2)O2/Graphite lithium ion cells with poly (vinylidene fluoride) binder. I-Microstructural changes in the anode. Journal of Power Sources, 2018, 385:148-155. [24] BARENO J, RAGO N, DOGAN F, et al. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene fluoride) binder. III-Chemical changes in the cathode[J]. Journal of Power Sources, 2018, 385:165-171. [25] CHEN Z, QIN Y, AMINE K. Redox shuttles for safer lithium-ion batteries[J]. Electrochimica Acta, 2009, 54:5605-5613. [26] ZHANG J, SHKROB I, ASSARY R, et al. Dual overcharge protection and solid electrolyte interphase-improving action in Li-ion cells containing a bis-annulated dialkoxyarene electrolyte additive[J]. Journal of Power Sources, 2018, 378:264-267. [27] FERNANDES Y, BRY A, PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389:106-119. [28] FERNANDES Y, BRY A, PERSIS S. Thermal degradation analyses of carbonate solvents used in Li-ion batteries[J]. Journal of Power Sources 2019, 414:250-261. [29] HUANG P, VERMA A, ROBLES D, et al. Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition[J]. Applied Thermal Engineering, 2018, 132:521-530. [30] YE J, CHEN H, WANG Q, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182:464-474. [31] GUO R, LU L, OUYANG M, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016(6):30248. [32] LAI X, ZHENG Y, ZHOU L, et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells[J]. Electrochimica Acta, 2018, 278:245-254. [33] KRISTON A, PFRANG A, DÖRING H, et al. External short circuit performance of Graphite-LiNi1/3Co1/3Mn1/3O2 and Graphite-LiNi0.8Co0.15Al0.05O2 cells at different external resistances[J]. Journal of Power Sources, 2017, 361:170-181. [34] KUPPER C, SPITZNAGEL S, DÖRING H, et al. Combined modeling and experimental study of the high-temperature behavior of a lithium-ion cell:Differential scanning calorimetry, accelerating rate calorimetry and external short circuit[J]. Electrochimica Acta, 2019, 306:209-219. [35] CHEN Z, XIONG R, TIAN J, et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy, 2016, 184:365-374. [36] CHEN Z, XIONG R, LU J, et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied Energy, 2018, 213:375-383. [37] XIONG R, YANG R, CHEN Z, et al. Online fault diagnosis of external short circuit for lithium-ion battery pack[J]. IEEE Transactions on Industrial Electronics, 2019, DOI:10.1109/TIE.2019.2899565. [38] YANG R, XIONG R, HE H, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187:950-959. [39] 熊瑞,马骕骁,杨瑞鑫,等. 动力电池外部短路故障热-力影响与分析[J]. 机械工程学报, 2019, 55(2):115-125. XIONG Rui, MA Suxiao, YANG Ruixin, et al. Thermo-mechanical influence and analysis of external short circuit faults in lithium-ion battery[J]. Journal of mechanical engineering. 2019, 55(2):115-125. [40] RHEINFELD A, NOEL A, WILHELM J, et al. Quasi-isothermal external short circuit tests applied to lithium-ion cells:Part I. Measurements n[J]. Journal of the electrochemical society. 2018,165:A3427-A3448. [41] RHEINFELD A, STURM J, NOEL A, et al. Quasi-isothermal external short circuit tests applied to lithium-ion cells:Part II. Modeling and simulation[J]. Journal of the Electrochemical Society. 2019,166:A151-A177. [42] ABAZA A, FERRARI S, WONG H, et al. Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells[J]. Journal of Energy Storage, 2018, 16:211-217. [43] ZHU J, ZHANG X, LUO H, et al. Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests[J]. Applied Energy, 2018, 224:251-266. [44] SEUNG H, THOMAS T, ZHU J, et al. Failure in lithium-ion batteries under transverse indentation loading. Journal of Power Sources, 2018, 389:148-159. [45] THOMAS K, ELHAM S, TOMASZ W. Dynamic impact tests on lithium-ion cells[J]. International Journal of Impact Engineering, 2017, 108:205-216. [46] ZHU J, ZHANG X, ELHAM S, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression[J]. Journal of Power Sources, 2016, 336. 332-340. [47] ZHANG X, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery[J]. Journal of Power Sources, 2015, 280:47-56. [48] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources. 2013, 220:360-372. [49] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch li-ion batteries for mechanical integrity[J]. Lancet, 2012, 201:307-321. [50] LUO H, ZHU J, SAHRAEI E, et al. Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings[J]. RSC Advances, 2018, 8:3996-4005. [51] LIU B, ZHAO H, YU H, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017, 256:172-184. [52] LIU B, YIN S, XU J. Integrated computation model of lithium-ion battery subject to nail penetration[J]. Applied Energy, 2016, 183:278-289. [53] XU J, LIU B, WANG X, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies[J]. Applied Energy, 2016, 172:180-189. [54] XU J, LIU B, HU D. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016, 6(1):21829. [55] YOKOSHIMAV T, MUKOYAMA D, MAEDA F, et al. Operando analysis of thermal runaway in lithium ion battery during nail-penetration test using an X-ray inspection system[J]. Journal of The Electrochemical Society, 2019, 166:A1243-A1250. [56] YOKOSHIMAV T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393:67-74. [57] ZHU J, LUO H, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading[J]. International Journal of Impact Engineering, 2019, DOI:131. 10.1016/j.ijimpeng. 2019. 05.003. [58] JIA Y, YIN S, LIU B, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading[J]. Energy, 2019, 166:951-960. [59] CHEN Y, SANTHANAGOPALAN S, BABU V, et al. Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact[J]. Composite Structures, 2019, 218:50-59. |