Multi-space Fused Periodic Variable Impedance Skill Learning Based on Rhythmic Dynamic Movement Primitive and Robot Dynamics
LIU Chengguo1,2, HE Ye1,2, CHEN Xiaoan1,2, WANG Guangjian1,2
1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044; 2. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044
LIU Chengguo, HE Ye, CHEN Xiaoan, WANG Guangjian. Multi-space Fused Periodic Variable Impedance Skill Learning Based on Rhythmic Dynamic Movement Primitive and Robot Dynamics[J]. Journal of Mechanical Engineering, 2025, 61(1): 150-161.
[1] YANG G Z,BELLINGHAM J,CHOSET H,et al. Science for robotics and robotics for science[J]. Science Robotics,2016,1(1):2099. [2] 刘辛军,于靖军,王国彪,等. 机器人研究进展与科学挑战[J]. 中国科学基金,2016,30(5):425-431. LIU Xinjun,YU Jingjun,WANG Guobiao,et al. Research trend and scientific challenge of robotics[J]. Bulletin of National Natural Science Foundation of China,2016,30(5):425-431. [3] 赵杰,武睿,张赫,等. 面向复杂力交互任务的操作技能传递与控制研究[J]. 机械工程学报,2022,58(18):116-132. ZHAO Jie,WU Rui,ZHANG He,et al. Research on operation skill transfer and control oriented to complex force interaction tasks[J]. Journal of Mechanical Engineering,2022,58(18):116-132. [4] HOGAN N. Impedance control:An approach to manipulation[C]. Proceedings of the American Control Conference,San Diego,USA,1984,304-313,IEEE. [5] RAVICHANDAR H,POLYDOROS A S,CHERNOVA S,et al. Recent advances in robot learning from demonstration[J]. Annual review of Control,Robotics,Autonomous Systems,2020,3:297-330. [6] YU X B,LIU P S,HE W,et al. Human-robot variable impedance skills transfer learning based on dynamic movement primitives[J]. IEEE Robotics and Automation Letters,2022,7(3):6463-6470. [7] ZENG C,LI S,FANG B,et al. Generalization of robot force-relevant skills through adapting compliant profiles[J]. IEEE Robotics and Automation Letters,2022,7(2):1055-1062. [8] 邢宏军,丁亮,高海波,等. 基于阻抗控制的机器人旋拧阀门轴向位置自适应跟踪[J]. 机械工程学报,2019,55(15):124-134. XING Hongjun,DING Liang,GAO Haibo,et al. Adaptive tracking of axial position for valve-turning with a robot based on impedance control[J]. Journal of Mechanical Engineering,2019,55(15):124-134. [9] 曾晨东,艾海平,陈力. 空间机械臂在轨插、拔孔操作力/位姿阻抗控制[J]. 机械工程学报,2022,58(03):84-94. ZENG Chendong,AI Haiping,CHEN Li. Force/pose impedance control for space manipulator orbit insertion and extraction[J]. Journal of Mechanical Engineering,2022,58(03):84-94. [10] LIAO Z W,JIANG G D,ZHAO F,et al. Dynamic skill learning from human demonstration based on the human arm stiffness estimation model and riemannian DMP[J]. IEEE/ASME Transactions on Mechatronics,2022:1-12. [11] AJOUDANI A,FANG C,TSAGARAKIS N,et al. Reduced-complexity representation of the human arm active endpoint stiffness for supervisory control of remote manipulation[J]. The International Journal of Robotics Research,2017,37(1):155-167. [12] PERREAULT E J,KIRSCH R F,ACOSTA A M. Multiple-input,multiple-output system identification for characterization of limb stiffness dynamics[J]. Biological Cybernetics,1999,80(5):327-337. [13] WU Y Q,ZHAO F,KIM W,et al. An intuitive formulation of the human arm active endpoint stiffness[J]. Sensors,2020,20(18):5357. [14] ABU-DAKKA F J,ROZO L,CALDWELL D G. Force-based variable impedance learning for robotic manipulation[J]. Robotics and Autonomous Systems,2018,109:156-167. [15] CALINON S,BRUNO D,CALDWELL D G. A task-parameterized probabilistic model with minimal intervention control[C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),Hong Kong,China,2014,3339-3344,IEEE. [16] CALINON S,D’HALLUIN F,SAUSER E L,et al. Learning and reproduction of gestures by imitation an approach based on hidden markov model and gaussian mixture regression[J]. IEEE Robotics and Automation Magazine,2010,17(2):44-54. [17] LEONEL R,JOÃO S,SYLVAIN C,et al. Learning controllers for reactive and proactive behaviors in human-robot collaboration[J]. Frontiers in Robotics and AI,2016,3(30):1-11. [18] IJSPEERT A J,NAKANISHI J,HOFFMANN H,et al. Dynamical movement primitives: learning attractor models for motor behaviors[J]. Neural Computation,2013,25(2):328-373. [19] PARASCHOS A,DANIEL C,PETERS J,et al. Probabilistic movement primitives[J]. Autonomous Robots,2014,42(3):529-551. [20] HUANG Y L,ROZO L,SILVÉRIO J,et al. Kernelized movement primitives[J]. International Journal of Robotics Research,2019,38(7):833-852. [21] GAO X,SILVÉRIO J,PIGNAT E,et al. Motion mappings for continuous bilateral teleoperation[J]. IEEE Robotics and Automation Letters,2020,6(3):5048-5055. [22] KHANSARI-ZADEH S M,BILLARD A. Learning stable nonlinear dynamical systems with gaussian mixture models[J]. IEEE Transactions on Robotics,2011,27(5):943-957. [23] ABU-DAKKA F J,KYRKI V. Geometry-aware dynamic movement primitives[C]. proceedings of the IEEE International Conference on Robotics and Automation (ICRA),Paris,France,2020,4421-4426,IEEE. [24] ABU-DAKKA F J,HUANG Yunlong,SILVÉRIO J,et al. A probabilistic framework for learning geometry-based robot manipulation skills[J]. Robotics and Autonomous Systems,2021,141:103761. [25] IJSPEERT A J,NAKANISHI J,SCHAAL S. Learning rhythmic movements by demonstration using nonlinear oscillators[C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Lausanne,Switzerland,2002,958-963,IEEE. [26] GAMS A,IJSPEERT A J,SCHAAL S,et al. On-line learning and modulation of periodic movements with nonlinear dynamical systems[J]. Autonomous Robots,2009,27(1):3-23. [27] PETRIC T,GAMS A,IJSPEERT A J,et al. On-line frequency adaptation and movement imitation for rhythmic robotic tasks[J]. The International Journal of Robotics Research,2011,30(14):1775-1788. [28] PENNEC X,FILLARD P,AYACHE N. A riemannian framework for tensor computing[J]. International Journal of Computer Vision,2006,66(1):41-66. [29] SRA S,HOSSEINI R. Conic geometric optimization on the manifold of positive definite matrices[J]. Siam Journal on Optimization,2015,25(1):713-739. [30] LEE. Introduction to smooth manifolds (Graduate Texts in Mathematics) [M]. New York:Springer,2012. [31] JAQUIER N,ROZO L,CALDWELL D G,et al. Geometry-aware manipulability learning,tracking,and transfer[J]. International Journal of Robotics Research,2021,40(2-3):624-650. [32] ROZO L,CALINON S,CALDWELL D G,et al. Learning collaborative impedance-based robot behaviors[C]. Proceedings of the AAAI Conference on Artificial Intelligence,2013. [33] HIGHAM N J. Computing a nearest symmetric positive semidefinite matrix[J]. Linear Algebra and Its Applications,1988,103:103-118. [34] 李海源,刘畅,严鲁涛,等. 上肢外骨骼机器人的阻抗控制与关节试验研究[J]. 机械工程学报,2020,56(19):200-209. LI Haiyuan,LIU Chang,YAN Lutao,et al. Research on impendence control of an upper limb exoskeleton robot and joint experiments[J]. Journal of Mechanical Engineering,2020,56(19):200-209. [35] 琦歆,俞滨,王春雨,等. 液压驱动单元基于力的阻抗控制系统前馈抗扰控制研究[J]. 机械工程学报,2023,59(04):295-307. ZHU Qixin,YU Bin,WANG Chunyu,et al. Research on feedforward disturbance rejection control for force-based impedance control system of hydraulic drive unit[J]. Journal of Mechanical Engineering,2023,59(03):295-307. [36] 李洋,朱立爽,刘今越,等. 基于动力学模型辨识的全臂柔顺控制[J]. 机械工程学报,2022,58(03): 45-54. LI Yang,ZHU Lishuang,LIU Jinyue,et al. Dynamic model identification for whole-arm compliance control[J]. Journal of Mechanical Engineering,2022,58(03):45-54. [37] MARKUS L. Asymptotically autonomous differential systems[J]. Contributions to the Theory of Nonlinear Oscillations,2016,3(17). [38] FIORI S. Manifold calculus in system theory and control—Fundamentals and first-order systems[J]. Symmetry,2021,13(11):2092. [39] SLOTINE J-J E,LI W. Applied nonlinear control [M]. Prentice hall Englewood Cliffs,NJ,1991.